Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)
\(A=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)^2}\)
\(A=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
b) \(B=\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)
\(B=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)
\(B=\dfrac{\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)
c) \(C=\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)
\(C=\dfrac{-\left(2a-3\sqrt{a}+1\right)}{\left(2\sqrt{a}\right)^2-2\sqrt{a}\cdot2\cdot1+1^2}\)
\(C=\dfrac{-\left(\sqrt{a}-1\right)\left(2\sqrt{a}-1\right)}{\left(2\sqrt{a}-1\right)^2}\)
\(C=\dfrac{-\sqrt{a}+1}{2\sqrt{a}-1}\)
d) \(D=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)
\(D=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{\sqrt{a}-2}\)
\(D=\sqrt{a}+2-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)
\(D=\left(\sqrt{a}+2\right)-\left(\sqrt{a}+2\right)\)
\(D=0\)
\(A=\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}=x-\sqrt{xy}+y\)
\(B=\dfrac{\sqrt{x}-\sqrt{y}}{x\sqrt{x}-y\sqrt{y}}=\dfrac{1}{x+\sqrt{xy}+y}\)
\(C=\dfrac{3\sqrt{3}+x\sqrt{x}}{3-\sqrt{3x}+x}=\sqrt{x}+\sqrt{3}\)
\(D=\dfrac{x+\sqrt{5x}+5}{x\sqrt{x}-5\sqrt{5}}=\dfrac{1}{\sqrt{x}-\sqrt{5}}\)
\(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2+2xy+x^2}-\frac{x^3+y^3}{x^4-y^4}\right)\left(x\ne\pm y;y\ne0\right)\)
\(\Leftrightarrow A=\frac{4xy}{\left(y^2-x^2\right)\left(y^2+x^2\right)}:\left(\frac{1}{\left(y+x\right)^2}-\frac{x^3+y^3}{\left(x^2-y^2\right)\left(x^2+y^2\right)}\right)\)
Ta có : \(P=\frac{\frac{\left(x-y\right)^3}{\left(\sqrt{x}+\sqrt{y}\right)^3}+2x\sqrt{x}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}+\frac{3\left(\sqrt{xy}-y\right)}{x-y}\)
=> \(P=\frac{\frac{\left(\sqrt{x}+\sqrt{y}\right)^3\left(\sqrt{x}-\sqrt{y}\right)^3}{\left(\sqrt{x}+\sqrt{y}\right)^3}+2x\sqrt{x}+y\sqrt{y}}{\sqrt{x}^3+\sqrt{y}^3}+\frac{3\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
=> \(P=\frac{\left(\sqrt{x}-\sqrt{y}\right)^3+2x\sqrt{x}+y\sqrt{y}}{\sqrt{x}^3+\sqrt{y}^3}+\frac{3\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=> \(P=\frac{x\sqrt{x}-3x\sqrt{y}+3y\sqrt{x}-y\sqrt{y}+2x\sqrt{x}+y\sqrt{y}}{\left(x+y\right)\left(x-\sqrt{xy}+y\right)}+\frac{3\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=> \(P=\frac{3x\sqrt{x}-3x\sqrt{y}+3y\sqrt{x}}{\left(x+y\right)\left(x-\sqrt{xy}+y\right)}+\frac{3\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=> \(P=\frac{3\sqrt{x}\left(x-\sqrt{xy}+y\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}+\frac{3\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=> \(P=\frac{3\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{3\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=> \(P=\frac{3\sqrt{x}+3\sqrt{y}}{\sqrt{x}+\sqrt{y}}=\frac{3\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=3\)