Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lấy n = 2 => 202 + 62 + 32-1 = 439 không chia hết cho 323
=> đề sai
Lời giải:
Để \(A_n=20^n+16^n-3^n-1\vdots 323\)
\(\Leftrightarrow A_n\vdots 17 \) và \(A_n\vdots 19\)
------------------------------
Ta có: \(A_n=(20^n-3^n)+(16^n-1)\)
\(20^n-3^n=(20-3)(20^{n-1}+20^{n-2}.3+...+3^n)\vdots 17\)
TH1: $n$ lẻ:
\(16^n-1=16^n+1^n-2=(16+1)(16^{n-1}+...+1)-2\)
\(=17(16^{n-1}+...+1)-2\not\vdots 17\) do \(2\not\vdots 17\)
Khi đó \(A_n=(20^n-3^n)+(16^n-1)\not\vdots 17\) (loại)
TH2: $n$ chẵn.
\(16^n-1=16^{2k}-1^{2k}=(16^2-1)[(16^2)^{k-1}+...+1]=(16-1)(16+1)[(16^2)^{k-1}+...+1]\)
\(\Rightarrow 16^n-1\vdots 17\). Khi đó \(A_n=(20^n-3^n)+(16^n-1)\vdots 17\)
Mặt khác: \(A_n=(20^n-1)+(16^n-3^n)\)
\(20^n-1=20^n-1^n=(20-1)(20^{n-1}+...+1)\vdots 19\)
\(16^n-3^n=16^{2k}-3^{2k}=(16^2-3^2)[(16^2)^{k-1}+...+(3^2)^{k-1}]\vdots 16^2-3^2\vdots 19\)
\(\Rightarrow A=20^n-1+16^n-3^n\vdots 19\)
Vậy với $n$ chẵn thì $A_n$ vừa chia hết cho $17$ vừa chia hết cho $19$
Hay $A_n$ chia hết cho $323$
Vậy số $n$ là thỏa mãn là tập hợp các số nguyên dương chẵn.
32+n -22+n +3n -2n+3n-2n =32 .3n -22 .2n +3n -2n
=9.3n -4.2n +3n -2n
=(9.3n +3n) -4.2n -2n
=3n (9+1) - (4.2n +2n)
=3n .10 - 2n (4+1)
=3n .10 - 2n .5
; 2n chia hết cho 2; 5 chia hết ch3n .10 - 2n .5o 5 nên 2n .5 chia hết cho 10 và 3n .10 chia hết cho 10
nên 3n .10 - 2n .5 chia hết cho 10
32+n -22+n +3n -2n+3n-2n =32 .3n -22 .2n +3n -2n
=9.3n -4.2n +3n -2n
=(9.3n +3n) -4.2n -2n
=3n (9+1) - (4.2n +2n)
=3n .10 - 2n (4+1)
=3n .10 - 2n .5
; 2n chia hết cho 2; 5 chia hết ch3n .10 - 2n .5o 5 nên 2n .5 chia hết cho 10 và 3n .10 chia hết cho 10
nên 3n .10 - 2n .5 chia hết cho 10
4n+2 -3n+2 - 4n - 3n
= 4n+2 - 4n - 3n+2 - 3n
= 4n ( 42 - 1 ) - 3n ( 32 + 1 )
= 4n .15 - 3n.10
= 4n-1.4.15 - 3n-1.3.10
= 4n-1.60 - 3n-1.30
= 30.( 4n-1.2 - 3n-1 ) chia hết cho 30 ( đpcm )
\(3^{n+2}-2^{n+2}+3^n-2^n\) \(⋮\)\(10\)
Ta có : \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=9\times3^n-4\times2^n+3^n-2^n\)
\(=10\times3^n-5\times2\times2^{n-1}\)
\(=10\times\left(3^n-2^{n-1}\right)\)
\(\Rightarrow\)\(3^{n+2}-2^{n+2}+3^n-2^n\)\(⋮\)10
3n+2-2n+2+3n-2n=3n+2+3n-2n+2-2n=3n.32+3n-2n.22-2n=3n.(32+1)-2n(22+1)=3n.10-2n.5=3n.10-2n-1.10=10.(3n-2n-1)
=>3n+2-2n+2+3n-2n chia hết cho 10
\(3^{n+3}+2^{n+3}-3^{n+2}+2^{n+2}=27.3^n-9.3^n+8.2^n+4.2^n\)
\(=3^n\left(27-9\right)+2^n\left(8+4\right)\)
\(=6.3^{n+1}+6.2^{n+1}\)
\(=6\left(3^{n+1}+2^{n+1}\right)⋮6\left(đpcm\right)\)
mk nghĩ là các số chẵn