Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để \(\frac{1}{2-p}\) có căn bậc 2 thì \(\frac{1}{2-p}\geq 0\)
Điều này xảy ra khi \(2-p>0\Leftrightarrow p< 2\)
Để \(\dfrac{1}{-p-2}\) có căn bậc hai thì -p-2>0
=>p<-2
1) \(P=\frac{2}{6-m}\left(m\ne6\right)\)
Để P có GTLN thì 6-m đạt giá trị nhỏ nhất
=> 6-m=1
=> m=5 (tmđk)
Vậy m=5 thì P đạt giá trị lớn nhất
Ta có \(P=\dfrac{2018-x}{4-x}=\dfrac{2014+4-x}{4-x}=1+\dfrac{2014}{4-x}\)
Để P đạt giá trị lớn nhất thì \(\dfrac{2014}{4-x}\) đạt giá trị lớn nhất
⇒ 4 - x đạt giá trị nguyên dương nhỏ nhất
⇔ \(4-x=1\Leftrightarrow x=3\)
Với \(x=3\) thì \(P=2015\)
Vậy Max(P)=2015 khi x=3
Thấy đúng thì ủng hộ mik nhak
\(B=\dfrac{\left(x+4\right)\times x-2}{x+4}\)
\(B=x-\dfrac{2}{x+4}\)
Vì \(x\in z\), để \(B\in z\Leftrightarrow\dfrac{2}{x+4}\in z\)
\(\Leftrightarrow2⋮\left(x+4\right)\)
\(\Leftrightarrow x+4\inƯ\left(2\right)\)
Mà \(Ư\left(2\right)=\left(\pm1;\pm2\right)\)
Ta có bảng sau
\(\begin{matrix}x+4&1&-1&2&-2\\x&-3&-5&-2&-6\end{matrix}\)
Vậy \(x\in\left(-2;-3;-5;-6\right)\) thì \(B\in z\)
a ) Ta có \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
Điều kiện đúng A ≠ - 1
b ) Gọi ƯCLN ( a2+a-1; a2+a+1 )
Vì a2 + a + 1 = a ( a + 1 ) - 1 là số lẻ nên d là số lẻ
Mặt khác , 2 = [ ( a2+a+1 ) - ( a2+a-1 ) ] ⋮ d
Nên d = 1 tức là a2+a+1 và a2+a-1 là nguyên tố cùng nhau
⇒ Biểu thức A là phân số tối giản
mọi người giúp mình với!!!!!!!!!!!!!!!!!!
cảm ơn mọi người
b) \(x^4+2x^2+1=0\)
\(\Rightarrow\left(x^2+1\right)^2=0\)
Mà: \(\left(x^2+1\right)^2>0\)
=> P(x) ko có nghiệm
c) \(16x^2y^5-2x^3y^2=\dfrac{15}{4}\)
\(4^{n+3}+4^{n+2}-4^{n+1}-4^n=4^2\left(4^{n+1}+4^n\right)-\left(4^{n+1}+4^n\right)\)
\(=\left(4^2-1\right)\left(4^{n+1}+4^n\right)=15\left(4^{n+1}+4^n\right)\)
Do \(n\) và \(n+1\) là 2 số tự nhiên liên tiếp nên luôn khác tính chẵn lẻ
Mà \(4^k\) tận cùng bằng 4 nếu k lẻ, tận cùng bằng 6 nếu k chẵn
\(\Rightarrow4^{n+1}\) và \(4^n\) luôn có 1 số tận cùng bằng 4, một số tận cùng bằng 6
\(\Rightarrow4^{n+1}+4^n\) tận cùng bằng 0
\(\Rightarrow4^{n+3}+4^{n+2}-4^{n+1}-4^n\) luôn có tận cùng bằng 0
cô giải thích rỏ hơn được không ạ