K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2018

\(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)=BS17+\left[\left(BS17-1\right)^n-1\right]=BS17+BS17=BS17\)(vì n chẵn) (1)

\(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)=BS19+\left[\left(BS19-3\right)^n-3^n\right]=BS19+BS19=BS19\)(vì n chẵn) (2)

Mà (19;17)=1 (3)

Từ (1),(2) và (3) suy ra: \(20^n+16^n-3^n-1⋮323\)

7 tháng 12 2018

Vô lí, vì nếu thay n=9 thì kết quả của 1+2+3+...+9=45

Và 45 không chia hết 11

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

14 tháng 2 2016

Làm được chưa