\(\dfrac{cosA}{x}+\dfrac{cosB}{y}+\dfrac{c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2020

Giúp mk câu dưới nx nha bạn

NV
13 tháng 5 2020

Chỉ đúng với \(x;y;z\in R^+\)

Nói chung là ta cần chứng minh

\(x^2+y^2+z^2\ge2xycosC+2zxcosB+2yzcosA\)

\(\Leftrightarrow x^2-2x\left(ycosC+zcosB\right)+y^2+z^2-2yzcosA\ge0\)

\(\Leftrightarrow\left(x-ycosC-zcosB\right)^2-\left(ycosC+zcosB\right)^2+y^2+z^2-2yzcosA\ge0\)

\(\Leftrightarrow\left(x-ycosC-zcosB\right)^2-y^2cos^2C-z^2cos^2B+y^2+z^2-2yz\left(cosB.cosC+cosA\right)\ge0\)

\(\Leftrightarrow\left(x-ycosC-zcosB\right)^2+y^2\left(1-cos^2C\right)+z^2\left(1-cos^2B\right)-2yz\left(cosB.cosC-cos\left(B+C\right)\right)\ge0\)

\(\Leftrightarrow\left(x-ycosC-zcosB\right)^2+y^2sin^2C+z^2.sin^2B-2yz.sinB.sinC\ge0\)

\(\Leftrightarrow\left(x-ycosC-zcosB\right)^2+\left(ysinC-zsinB\right)^2\ge0\) (luôn đúng)

15 tháng 10 2017

ÁP dụng AM-GM:

\(\sum\dfrac{a^2}{\sqrt{1-a^2}}=\sum\dfrac{a^3}{\sqrt{\left(1-a^2\right).a^2}}\ge\sum\dfrac{a^3}{\dfrac{1}{2}\left(1-a^2+a^2\right)}=2\sum a^3=2\left(đpcm\right)\)

Dấu = không xảy ra

1 tháng 8 2017

Áp dụng bất đẳng thức Cauchy-Shwarz dạng Engel và \(a^2+b^2+c^2\ge ab+bc+ca\) có:
\(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}=\dfrac{x^4}{xy}+\dfrac{y^4}{yz}+\dfrac{z^4}{xz}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge1\)

Dấu " = " khi x = y = z = \(\dfrac{1}{\sqrt{3}}\)

Vậy...

1 tháng 8 2017

Cách khác nhé!/-/

Áp dụng BĐT Holder ta có:

\(\left(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\right)\left(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\right)\left(y^2+z^2+x^2\right)\ge\left(x^2+y^2+z^2\right)^3\)

Do đó \(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\ge x^2+y^2+z^2\ge1\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
5 tháng 6 2018

Bài 1:

Biểu thức chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất.

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Giờ chỉ cần cho biến $x$ nhỏ vô cùng đến $0$, khi đó giá trị biểu thức trong ngoặc sẽ tiến đến dương vô cùng, khi đó P sẽ tiến đến nhỏ vô cùng, do đó không có min

Nếu chuyển tìm max thì em tìm như sau:

Áp dụng BĐT Cauchy_Schwarz:

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq \frac{(1+1+1)^2}{x+1+y+1+z+1}=\frac{9}{x+y+z+3}=\frac{9}{4}\)

Do đó: \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\leq 3-\frac{9}{4}=\frac{3}{4}\)

Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
5 tháng 6 2018

Bài 2:

Áp dụng BĐT Cauchy-Schwarz :

\(\frac{1}{a+3b+2c}=\frac{1}{9}\frac{9}{(a+c)+(b+c)+2b}\leq \frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

\(\Rightarrow \frac{ab}{a+3b+2c}\leq \frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Hoàn toàn tương tự:

\(\frac{bc}{b+3c+2a}\leq \frac{1}{9}\left(\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{b}{2}\right)\)

\(\frac{ac}{c+3a+2b}\leq \frac{1}{9}\left(\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{c}{2}\right)\)

Cộng theo vế:

\(\Rightarrow \text{VT}\leq \frac{1}{9}\left(\frac{b(a+c)}{a+c}+\frac{a(b+c)}{b+c}+\frac{c(a+b)}{a+b}+\frac{a+b+c}{2}\right)\)

hay \(\text{VT}\leq \frac{a+b+c}{6}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

10 tháng 11 2017

mọi người giúp em vs

\(VT=\dfrac{3}{xy+yz+xz}+\dfrac{2}{x^2+y^2+z^2}\)

\(=\dfrac{8}{4\left(xy+yz+xz\right)}+\dfrac{4}{4\left(xy+yz+xz\right)}+\dfrac{4}{2\left(x^2+y^2+z^2\right)}\)

\(\ge\dfrac{8}{4\cdot\dfrac{\left(x+y+z\right)^2}{3}}+\dfrac{\left(2+2\right)^2}{2\left(x+y+z\right)^2}\)

\(=\dfrac{8}{4\cdot\dfrac{1^2}{3}}+\dfrac{\left(2+2\right)^2}{2\cdot1^2}=14\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

Đề: Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y\le z\end{matrix}\right.\) tìm Min của \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\) Làm thế này không biết đúng ko Ta có :A= \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{y^2}{z^2}\) => A...
Đọc tiếp

Đề: Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y\le z\end{matrix}\right.\) tìm Min của \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\) Làm thế này không biết đúng ko

Ta có :A= \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{y^2}{z^2}\)

=> A \(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)

Áp dụng BĐT Cauchy ta có

\(A\ge3+2+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)=6+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)

Do \(x+y\le z\Rightarrow\dfrac{x}{z}+\dfrac{y}{z}\le1\) ; Đặt \(u=\dfrac{x}{z}\); \(v=\dfrac{y}{z}\)

\(\Rightarrow\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}=\dfrac{1}{u^2}+\dfrac{1}{v^2}\ge\dfrac{2}{uv}\ge\dfrac{2}{\dfrac{\left(u+v\right)^2}{4}}\ge\dfrac{2}{\dfrac{1}{4}}=8\)

\(\Rightarrow A\ge6+\dfrac{15}{16}.8=\dfrac{27}{2}\) Vậy minA = \(\dfrac{27}{2}\) khi \(x=y=\dfrac{z}{2}\)

4
10 tháng 12 2017

@Unruly Kid

10 tháng 12 2017

Gọi thêm bác nào vào duyệt đi???