Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi \(D=\frac{4-x+10}{4-x}=1+\frac{10}{4-x}\).
D lớn nhất khi và chỉ khi \(\frac{10}{4-x}\) lớn nhất.
Xét \(x>4\) thì \(\frac{10}{4-x}< 0.\left(1\right)\)
Xét \(x< 4\) thì \(\frac{10}{4-x}>0\). Phân số \(\frac{10}{4-x}\) có tử và mẫu đều dương, tử không đổi nên có giá trị lớn nhất khi mẫu nhỏ nhất. Mẫu \(4-x\) là số nguyên dương, nhỏ nhất khi \(4-x=1\) tức là \(x=3\). Khi đó
\(\frac{10}{4-x}=10\left(2\right)\)
So sánh \(\left(1\right)\) và \(\left(2\right)\), ta thấy \(\frac{10}{4-x}\) lớn nhất bằng 10. Vậy GTLN của D bằng 11 khi và chỉ khi \(x=3\)
ĐK: \(x\ne4\)
Để D lớn nhất thì 2D lớn nhất
Ta có: \(2D=\frac{2.\left(14-x\right)}{4-x}=\frac{28-2x}{4-x}=\frac{20}{4-x}+\frac{2.\left(4-x\right)}{4-x}=\frac{20}{4-x}+2\)
2D lớn nhất nên \(\frac{20}{4-x}\) lớn nhất hay 4 - x nhỏ nhất
+ Nếu x > 4 thì 4 - x < 0 => \(\frac{20}{4-x}\) < 0 (1)
+ Nếu x < 4 do 4 - x nhỏ nhất; x nguyên nên x = 3 => \(\frac{20}{4-x}=\frac{20}{4-3}=20\) (2)
So sánh (1) với (2) ta thấy (2) lớn hơn
Khi x = 3 thì \(D=\frac{14-3}{4-3}=\frac{11}{1}=11\)
Vậy GTNN của D là 11 khi x = 3
Ta có:
A = \(\frac{14-x}{4-x}\)
Để A có giá trị lớn nhất thì A > 0 => x < 4 và 4 - x bé nhất
=> x = {1; 2; 3}
Để 4 - x bé nhất thì x = 3
Giá trị đó là : \(\frac{14-3}{4-3}=\frac{11}{1}=11\)
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
Bài 1 : Tìm giá trị lớn nhất của biểu thức \(S=\frac{27-x}{2-x}\)Với x là số nguyên khác 2
Help me ><