Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\Delta=\left(2m-1\right)^2-4\left(m+1\right)\)
\(=4m^2-4m+1-4m-4\)
\(=4m^2-8m-3\)
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow\orbr{\begin{cases}m< \frac{2-\sqrt{7}}{2}\\m>\frac{2+\sqrt{7}}{2}\end{cases}}\)(1)
Theo Vi-et \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1x_2=m+1\end{cases}}\)
Vì \(x_1>x_2>0\Rightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-2m>0\\m+1>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m< \frac{1}{2}\\m>-1\end{cases}}\)
\(\Leftrightarrow-1< m< \frac{1}{2}\)(2)
Từ (1) và (2) \(\Rightarrow-1< m< \frac{2-\sqrt{7}}{2}\)
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
a) Thay m vào phương trình, ta có:
\(\hept{\begin{cases}\sqrt{2}\times x+4y=10-\sqrt{2}\\x+\sqrt{2}\times y=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+4y=10-\sqrt{2}\\x=6-\sqrt{2}y\end{cases}}\)
Thay giá trị đã có của x vào phương trình
\(\sqrt{2}\times\left(6-\sqrt{2}y\right)+4y=10-\sqrt{2}\)
\(\Rightarrow y=5-\frac{7\sqrt{2}}{2}\)
Thay giá trị của y vào phương trình:
\(x=6-\sqrt{2}\times\left(5-\frac{7\sqrt{2}}{2}\right)\)
\(\Rightarrow x=13-5\sqrt{2}\)
(Bạn viết phương trình nhé, nó dài nên ngại viết lắm =.=) (a = 1; b' = - m - 1; c = m ^ 2)
Xét phương trình trên có a = 1 khác 0 => Phương tình là phương trình bậc 2 một ẩn
Để phương trình có 2 nghiệm phân biệt <=> \(\Delta'>0\)
<=> b' ^ 2 - ac > 0
<=> (- m - 1) ^ 2 - 1. m ^ 2 > 0
<=> m ^2 + 2m + 1 - m ^ 2 > 0
<=> 2m + 1 > 0
<=> 2m > - 1
<=> m > - 0,5
Vậy để phương trrình có 2 nghiệm phân biệt thì m > - 0,5
a= 1; b'= -(m+1); c=2m
1. Δ'>0
Theo Hệ thức Viet ta có: S=...= 2(m+1) và P= 2m
2. Để PT có 2 nghiệm cùng dương
\(\left\{{}\begin{matrix}S=2\left(m+1\right)>0\Leftrightarrow m>-1\\P=2m>0\Leftrightarrow m>0\end{matrix}\right.\Rightarrow m>0\)
Vậy với m>0 thì PT có 2 nghiệm cùng dương
3. Từ Viets:
S= 2(m+1)= 2m+2
P= 2m
Suy ra: S-P=2m+2-2m=2
hay x1+x2-x1.x2-2=0
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=1-m+4\ge0\\x_1+x_2=-\dfrac{1}{2}< 0\\x_1.x_2=m-4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le5\\m>4\end{matrix}\right.\)
\(\Leftrightarrow4< m\le5\)