Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì |x-y| \(\ge\)0 với mọi x,y;|x+1|\(\ge\)0 vs mọi x
=>A\(\ge\)2016 vs mọi x,y
=> A đạt giá trị nhỏ nhất khi:\(\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x=-1\end{cases}}\)
vậy với x=y=-1 thì A đạt giá trị nhỏ nhất là 2016
k mik nha
bài này mik từng làm rồi
-----Chúc hok tốt---------
Giá trị nhỏ nhất của A là 2011 (vì A đạt giá trị nhỏ nhất khi /x-y/ + /x+1/ đạt giá trị nhỏ nhất hay bằng 0)
Vi /x-y/≥0
/x+1/≥0
=> A≥ 2017 với mọi xy
dâu = xảy ra khi /x-y/=0<=>y=-1
/x+1/=0<=>x=-1
Với giá trị nào của x,y thì biểu thức : A = \(|x-y|+|x+1|+2016\)đạt giá trị nhỏ nhất. Tìm giá trị đó
Ta có : \(\left|x+1\right|\ge0\forall x\)
Nên : |x + 1| nhỏ nhất bằng 0
<=> x + 1 = 0
=> x = -1
Lại có : \(\left|x-y\right|\ge0\forall x\)
Nên : |x - y| nhỏ nhất bằng 0
=> x - y = 0
mà x = -1
=> -1 - y = 0
=> y = -1
Vậy A = |x - y| + |x + 1| + 2016 nhwor nhất bằng 0 + 0 + 2016
=> A nhở nhất bằng 2016 khi x = y = -1
Ta có: |x-y| >=0 với mọi x,y
|x+1| >=0 với mọi x,y
=> |x-y|+|x+1|+2016 >=2016 với mọi x,y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\x=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi