Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}\) luôn xđ với mọi x
các câu còn lại tương tự
Bài 1:
Để căn thức có nghĩa thì:
a)
\(-5x-10\geq 0\Leftrightarrow 5x+10\leq 0\Leftrightarrow x\leq -2\)
b)
\(x^2-3x+2\geq 0\Leftrightarrow (x-1)(x-2)\geq 0\)
\(\Leftrightarrow \left[\begin{matrix} x-1\geq 0; x-2\geq 0\\ x-1\leq 0; x-2\leq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x\geq 2\\ x\leq 1\end{matrix}\right.\)
c) \(\frac{x+3}{5-x}\geq 0\)
\(\Leftrightarrow \left[\begin{matrix} x+3\geq 0; 5-x>0\\ x+3\leq 0; 5-x< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -3\leq x< 5\\ -3\geq x>5 (\text{vô lý})\end{matrix}\right.\)
\(\Rightarrow -3\leq x< 5\)
d) \(-x^2+4x-4\geq 0\)
\(\Leftrightarrow -(x^2-4x+4)\geq 0\Leftrightarrow -(x-2)^2\geq 0\)
Vì \((x-2)^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow x=2\)
\(a,x^2+1\ge0+1=1\Rightarrow\sqrt{x^2+1}\text{co nghia}\forall x\)
\(b,4x^2+3\ge4.0+3=3\Rightarrow\sqrt{4x^2+3}\text{co nghia}\forall x\)
\(c,9x^2-6x+1=\left(3x-1\right)^2\ge0\Rightarrow\sqrt{9x^2-6x+1}\text{co nghia }\forall x\)
\(\text{d,taco:}-\left(-x^2+2x-1\right)=\left(x-1\right)^2\ge0\Rightarrow-x^2+2x-1\le0\Rightarrow\sqrt{-x^2+2x-1}\text{co nghia }\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\) \(e,-\left|x+5\right|\le0\forall x\Rightarrow\sqrt{-\left|x+5\right|}\text{co nghia}\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
\(f,-2x^2-1\le0-1=-1\Rightarrow\sqrt{-2x^2-1}\text{ khong co nghia}\)
d)
Ta thấy \(-x^2+2x-1=-(x^2-2x+1)=-(x-1)^2\leq 0, \forall x\in\mathbb{R}\)
Mà để biểu thức có nghĩa thì \(-x^2+2x-1=-(x-1)^2\geq 0\)
Do đó \(-(x-1)^2=0\Leftrightarrow x=1\)
Vậy biểu thức có nghĩa khi $x=1$
e)
\(|x+5|\geq 0, \forall x\in\mathbb{R}\Rightarrow -|x+5|\leq 0, \forall x\in\mathbb{R}\)
Mà để căn thức có nghĩa thì \(-|x+5|\geq 0\)
Do đó \(-|x+5|=0\Leftrightarrow x=-5\) thì căn thức có nghĩa
f)
\(x^2\geq 0, \forall x\in\mathbb{R}\Rightarrow 2x^2+1> 0, \forall x\in\mathbb{R}\)
\(\Rightarrow -2x^2-1=-(2x^2+1)< 0, \forall x\in\mathbb{R}\)
Căn thức có nghĩa khi \(-2x^2-1\ge 0 \) (điều này không thể do cmt)
\(\Rightarrow \) không tồn tại x để căn thức có nghĩa.
a) Để : \(\sqrt{3x-2}\) xác định thì :
3x - 2 ≥ 0 ⇔ x ≥ \(\dfrac{2}{3}\)
KL...........
b) Để : \(\sqrt{4-2x}\) xác định thì :
4 - 2x ≥ 0 ⇔ x ≤ 2
KL.......
c) Để : \(\sqrt{-4x}\) xác định thì :
-4x ≥ 0 ⇔ x ≤ 0
KL.......
d) Để : \(\sqrt{x^2-2x+1}\) xác định thì :
x2 - 2x + 1 ≥ 0 ⇔ ( x - 1)2 ≥ 0 ( luôn đúng ∀x)
KL.........
Còn lại tương tự bạn nhé.
a/ \(x^2+4x-5>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}2x-1\ge0\\x-\sqrt{2x-1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\left\{{}\begin{matrix}x>0\\x^2>2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}x^2-3\ge0\\1-\sqrt{x^2-3}\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}\ge0\\-2x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn
e/ \(\left\{{}\begin{matrix}3x-1\ge0\\5x-3\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\ge\dfrac{3}{5}\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{3}{5}\)
a) Để A có nghĩa \(\Leftrightarrow4x^2-1\ge0\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1\ge0\\2x+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1\le0\\2x+1\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le-\dfrac{1}{2}\end{matrix}\right.\)
Vậy A có nghĩa khi \(x\ge\dfrac{1}{2}\) hoặc \(x\le-\dfrac{1}{2}\)
b) Ta có 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 > 0 với mọi x.
Vậy B có nghĩa với mọi x
c) Để C có nghĩa \(\Leftrightarrow2x-x^2>0\Leftrightarrow x\left(2-x\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\2-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\2-x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow0< x< 2\)
Vậy C có nghĩa khi 0 < x < 2
d) Để D có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{3}{x}>0\\-3x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2+3}{x}>0\\-3x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không có giá trị nào của x thỏa mãn điều kiện này.
Vậy không có giá trị của x để D có nghĩa
BT1.
a,Ta có :\(A^2=-5x^2+10x+11\)
\(=-5\left(x^2-2x+1\right)+16\)
\(=-5\left(x-1\right)^2+16\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow-5\left(x-1\right)^2\le0\)
\(\Rightarrow A^2\le16\Rightarrow A\le4\)
Dấu ''='' xảy ra \(\Leftrightarrow x=1\)
Vậy Max A = 4 \(\Leftrightarrow x=1\)
Câu b,c tương tự nhé.
b, \(\sqrt{-x^2+2x-1}\)
Để căn thức có nghĩa thì \(-x^2+2x-1\ge0\)
\(\Rightarrow-\left(x^2-2x+1\right)\ge0\)
\(\Rightarrow x^2-x-x+1\le0\Rightarrow\left(x^2-x\right)-\left(x-1\right)\le0\)
\(\Rightarrow x.\left(x-1\right).\left(x-1\right)\le0\)
\(\Rightarrow\left(x-1\right)^2\le0\Rightarrow x-1\le0\Rightarrow x\le1\)
Vậy \(x\ge1\) thì căn thức có nghĩa
c, \(\sqrt{-\left|x+5\right|}\)
Để căn thức có nghĩa thì \(-\left|x+5\right|\ge0\)
\(\Rightarrow\left|x-5\right|\le0\)
\(\Rightarrow\left\{{}\begin{matrix}x-5\le0\\x-5\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le5\\x\ge5\end{matrix}\right.\Rightarrow x=5\)
Vậy x=5 thì căn thức có nghĩa.
Chúc bạn học tốt!!! Các câu còn lại làm tương tự!
P/s: Câu a không rõ đề!
b) \(\sqrt{-x^2+2x-1}\) xác định \(\Leftrightarrow\) \(-x^2+2x-1\ge0\)
\(\Leftrightarrow\) \(-\left(x^2-2x+1\right)>0\) \(\Leftrightarrow\) \(x^2-2x+1\le0\)
\(\Leftrightarrow\) \(\left(x-1\right)^2< 0\) mà \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\) để \(\sqrt{-x^2+2x-1}\) xác định \(\Leftrightarrow\) \(x-1=0\) \(\Leftrightarrow\) \(x=1\)
c) \(\sqrt{-\left|x+5\right|}\) xác định \(\Leftrightarrow\) \(-\left|x+5\right|\ge0\) \(\Leftrightarrow\) \(\left|x+5\right|\le0\)
mà \(\left|x+5\right|\) \(\ge0\forall x\) \(\Rightarrow\) để \(\sqrt{-\left|x+5\right|}\) xác định
\(\Leftrightarrow\) \(\left|x+5\right|=0\) \(\Leftrightarrow\) \(x+5=0\) \(\Leftrightarrow\) \(x=-5\)
d) ta có : \(-2x^2-1< 0\forall x\) \(\Rightarrow\) biểu thức \(\sqrt{-2x^2-1}\) không tồn tại