K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

+ Tính đạo hàm  y ' = cos x + sin x + 2017 2 m .

y ' ≥ 0 ⇔ m ≥ - sin   x - cos   x 2017 2 = f ( x )

+ Theo bất đẳng thức Bunhiacopxki thì

( - sin x - cos x ) 2 ≤ ( - 1 ) 2 + ( - 1 ) 2 sin 2 x + cos 2 x = 2 - 2 ≤ ( - sin x - cos x ) ≤ 2

 Do đó : 

- 2 2017 2 ≤ f ( x ) ≤ 2 2017 2

F(x) đạt giá trị lớn nhất là  2 2017 2 = 1 2017 ⇒ m ≥ f ( m a x ) = 1 2017

Chọn C.

21 tháng 5 2019

Chọn B

Phương pháp:

Tính y', để hàm số đồng biến trên ℝ  thì (y' = 0 tại hữu hạn điểm)

Sử dụng 

Cách giải:

Tập xác định D =  ℝ

Đạo hàm 

Để hàm số đồng biến trên  thì (y' = 0 tại hữu hạn điểm)

Suy ra giá trị lớn nhất của tham số m thỏa mãn ycbt là m = 3

24 tháng 6 2018

Hàm số \(y=x+m\left(\sin x+\cos x\right)\)đồng biến trên \(R\) khi và chỉ khi:

\(y'=1+m\left(\cos x-\sin x\right)\ge0,\forall x\in R\)

\(\Leftrightarrow\min\limits\left(1+m\left(\cos x-\sin x\right)\right)\ge0,\forall x\in R\)(1)

Trước tiên ta sẽ đi tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: \(g\left(x\right)=\sin x-\cos x\)

Đặt \(t=\sin x+\cos x\Rightarrow2\sin x.\cos x=t^2-1\)

Ta có \(\left(g\left(x\right)\right)^2=\left(\cos x-\sin x\right)^2=2-t^2\le2\Rightarrow-\sqrt{2}\le g\left(x\right)\le\sqrt{2}\)

Do đó\(\left|m\left(\cos x-\sin x\right)\right|=\left|m\right|.\left|\cos x-\sin x\right|\le\left|m\right|\sqrt{2}\)

\(\Rightarrow-\sqrt{2}\left|m\right|\le m\left(\cos x-\sin x\right)\le\sqrt{2}\left|m\right|\)

Do đó (1)\(\Leftrightarrow1-\sqrt{2}\left|m\right|\ge0\Leftrightarrow\dfrac{-1}{\sqrt{2}}\le m\le\dfrac{1}{\sqrt{2}}\)

24 tháng 6 2018

bạn ơi, có thể nói đoạn dưới rõ hơn được không , mìn cũng không hiểu lắm . cảm ơn bạn nhiều

28 tháng 12 2017

25 tháng 9 2021

đây là đáp án

9 tháng 1 2017

Chọn A.

Tập xác định:D= R. Ta có:y ‘= m-3 + (2m+1).sinx

Hàm số nghịch biến trên R

 

Trường hợp 1: m= -1/ 2 ; ta có  0 ≤ 7 2   ∀ x ∈ ℝ

Vậy hàm số luôn nghịch biến trên R.

Trường hợp 2: m< -1/ 2 ; ta có

 

 

Trường hợp 3:m > -1/2 ; ta có:

Vậy  - 4 ≤ m ≤ 2 3

 

15 tháng 2 2017

Đáp án A

13 tháng 12 2017

a) y = –( m 2  + 5m) x 3  + 6m x 2  + 6x – 5

y′ = –3( m 2  + 5m) x 2  + 12mx + 6

Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.

Ta xét các trường hợp:

    +) m2 + 5m = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.

– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .

    +) Với  m 2  + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu

Δ' = 36 m 2  + 18( m 2  + 5m) ≤ 0 ⇔ 3 m 2  + 5m ≤ 0 ⇔ –5/3 ≤ m ≤ 0

– Với điều kiện đó, ta có –3( m 2  + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.

Vậy với điều kiện –5/3 ≤ m ≤ 0 thì hàm số đồng biến trên R.

b) Nếu hàm số đạt cực đại tại x = 1 thì y’(1) = 0. Khi đó:

y′(1) = –3 m 2  – 3m + 6 = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác, y” = –6( m 2  + 5m)x + 12m

    +) Với m = 1 thì y’’ = -36x + 12. Khi đó, y’’(1) = -24 < 0 , hàm số đạt cực đại tại x = 1.

    +) Với m = -2 thì y’’ = 36x – 24. Khi đó, y’’(1) = 12 > 0, hàm số đạt cực tiểu tại x = 1.

 

Vậy với m = 1 thì hàm số đạt cực đại tại x = 1.

29 tháng 1 2019

Chọn D.

Ta có: 

Hàm số đồng biến trên  ℝ

5 tháng 7 2017

Tính \(I=\int_0^{\dfrac{\pi}{2}}\dfrac{cos^{2017}x}{sin^{2017}x+cos^{2017}}dx\left(1\right)\)

Đặt \(t=cosx\Rightarrow sinx=\sqrt{1-cos^2x}\)

\(\Rightarrow dt=-sinx.dx\)

\(\Rightarrow I=\int_0^1\dfrac{t^{2017}.}{\sqrt{1-t^2}.\left(\left(\sqrt{1-t^2}\right)^{2017}+t^{2017}\right)}dt\)

Đặt: \(t=siny\Rightarrow\sqrt{1-t^2}=cosy\)

\(\Rightarrow dt=cosy.dy\)

\(\Rightarrow I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}y.cosy}{cosy\left(cos^{2017}y+sin^{2017}y\right)}dy=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}y}{\left(cos^{2017}y+sin^{2017}y\right)}\)

\(\Rightarrow I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}x}{\left(cos^{2017}x+sin^{2017}x\right)}\left(2\right)\)

Cộng (1) và (2) ta được

\(2I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}x+cos^{2017}x}{sin^{2017}x+cos^{2017}x}dx=\int_0^{\dfrac{\pi}{2}}1dx\)

\(=x|^{\dfrac{\pi}{2}}_0=\dfrac{\pi}{2}\)

\(\Rightarrow I=\dfrac{\pi}{4}\)

Thế lại bài toán ta được

\(\dfrac{\pi}{4}+t^2-6t+9-\dfrac{\pi}{4}=0\)

\(\Leftrightarrow t^2-6t+9=0\)

\(\Leftrightarrow t=3\)

Chọn đáp án C

mỗi trắc nghiệm thoy mà lm dài ntn s @@

chắc lên đó khó lắm ag