Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp:
Đặt 2x = t, t > 0. Chuyển về bài toán tìm m để phương trình bậc 2 ẩn t có 2 nghiệm t1, t2 thỏa mãn t1.t2 = 8
Cách giải:
Để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn x1 + x2 = 3 thì phương trình (2) có 2 nghiệm t1,t2 thỏa mãn t1.t2 = 2x1.2x2 = 2x1 + x2 = 23 = 8
Khi đó:
Lời giải:
Đặt $2^x=t$ thì pt trở thành:
$t^2-2mt+2m=0(*)$
Ta cần tìm $m$ để pt $(*)$ có hai nghiệm $t>0$ phân biệt thỏa mãn $t_1t_2=4$
$(*)$ có 2 nghiệm thì:
$\Delta'=m^2-2m>0\Leftrightarrow m(m-2)>0\Leftrightarrow m>2$ hoặc $m<0$ (1)
Áp dụng định lý Viet, để $(*)$ có 2 nghiệm dương thỏa mãn tích 2 nghiệm bằng 4 thì:
\(\left\{\begin{matrix} S=t_1+t_2>0\\ P=t_1t_2=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2m>0\\ 2m=4\end{matrix}\right.\Leftrightarrow m=2\) (2)
Từ $(1); (2)\Rightarrow$ không có giá trị nào của $m$ thỏa mãn
ĐKXĐ: \(x>0\)
\(x^{log_25}=t\Rightarrow25^{log_2x}=\left(5^{log_2x}\right)^2=\left(x^{log_25}\right)^2=t^2\)
\(x_1x_2=4\Rightarrow t_1t_2=\left(x_1x_2\right)^{log_25}=4^{log_25}=25\)
\(\left(m+1\right)t^2+\left(m-2\right)t-2m+1=0\) (1)
Pt có 2 nghiệm pb \(\Rightarrow\) (1) có 2 nghiệm dương pb
\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2-4\left(m+1\right)\left(-2m+1\right)>0\\t_1+t_2=\dfrac{2-m}{m+1}>0\\t_1t_2=\dfrac{-2m+1}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\-1< m< \dfrac{1}{2}\end{matrix}\right.\)
Ủa làm đến đây mới thấy kì kì, chỉ riêng hệ điều kiện này đã ko tồn tại m nguyên rồi, chưa cần điều kiện \(x_1x_2=4\)
cái này mk làm 1 nghiệm t =1 xong thay tìm m, có vẻ cũng ko dài lắm :))))