Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đoạn cuối mình làm sai:
\(\dfrac{3m-7}{m-1}< 1\Leftrightarrow\dfrac{2m-6}{m-1}< 0\Leftrightarrow1< m< 3\).
Nếu vậy thì đáp án đúng là A.
Để pt có 2 nghiệm thì:
\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m-2\right)^2-\left(m-3\right)\left(m-1\right)=1\ge0\end{matrix}\right.\Leftrightarrow m\ne1\).
Khi đó theo hệ thức Viète: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\).
Do đó \(x_1+x_2+x_1x_2< 1\Leftrightarrow\dfrac{2\left(m-2\right)+\left(m-3\right)}{m-1}< 1\Leftrightarrow\dfrac{3m-7}{m-1}< 1\Leftrightarrow3m-7< m-1\Leftrightarrow2m< 6\Leftrightarrow m< 3\).
Vậy m là các số thoả mãn m < 3 và m khác 1.
để pt có 2 nghiệm phân biệt thì: đenta > 0
mà ddeenta = m2 - 6m - 7 > 0
giải ra ta đc: m<-1 hay m>7 (1)
áp dụng hệ thức vi-et đc x1 + x2 = m-1 và x1.x2= m+2
kết 2 biểu thức trên dễ dàng làm đc x12 + x22 = m2-4m-3
bđt trên (=) (x12+x22)/x12.x22 - 1 > 0
thay vào đc (-16m -7)/(m2+4m+4) > 0 =) m khác -2 và m<-7/16
kết hợp vs (1) =) m<-1 và m khác -2
Phương trình đã cho có nghiệm khi:
\(\Delta'=\left(m+1\right)^2-2\left(m^2+4m+3\right)=-m^2-6m-5\ge0\)
\(\Leftrightarrow-5\le m\le-1\)
Khi đó \(\left\{{}\begin{matrix}x_1+x_2=-m-1\\x_1.x_2=\frac{m^2+4m+3}{2}\end{matrix}\right.\)
\(A=|\frac{m^2+4m+3}{2}+2\left(m+1\right)|=\frac{1}{2}.|m^2+8m+7|\le\frac{1}{2}.|0|=0\)
\(\Rightarrow MaxA=0\Leftrightarrow m=-1\)
1: \(\text{Δ}=\left(-m\right)^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: m-2<0
=>m<2
2: \(\Leftrightarrow\dfrac{x_1^2+1}{x_1}\cdot\dfrac{x_2^2+1}{x_2}=9\)
\(\Leftrightarrow\dfrac{\left(x_1\cdot x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=9\)
\(\Leftrightarrow\dfrac{\left(m-2\right)^2+\left(-m\right)^2-2\left(m-2\right)+1}{m-2}=9\)
\(\Leftrightarrow m^2-4m+4+m^2-2m+4+1=9m-18\)
\(\Leftrightarrow2m^2-6m+9-9m+18=0\)
=>2m^2-15m+27=0
hay \(m\in\varnothing\)
3: =>m=0
Lời giải:
Để PT có 2 nghiệm thì $\Delta'=(m+1)^2-2(m^2+4m+3)=-(m+1)(m+5)\geq 0$
$\Leftrightarrow -5\leq m\leq -1$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-(m+1)\\ x_1x_2=\frac{m^2+4m+3}{2}\end{matrix}\right.\)
Khi đó:
\(A=|\frac{m^2+4m+3}{2}+2(m+1)|=\frac{|(m+1)(m+7)|}{4}=\frac{-(m+1)(m+7)}{4}\) do $m\in [-5;-1]$
Mà:
$-(m+1)(m+7)=-(m^2+8m+7)=9-(m^2+8m+16)=9-(m+4)^2\leq 9$ với mọi $m\in [-5;-1]$
$\Rightarrow A\leq \frac{9}{4}$
Vậy $A_{\max}=\frac{9}{4}$ khi $m=-4$
Lời giải:
Để PT có 2 nghiệm thì $\Delta'=(m+1)^2-2(m^2+4m+3)=-(m+1)(m+5)\geq 0$
$\Leftrightarrow -5\leq m\leq -1$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-(m+1)\\ x_1x_2=\frac{m^2+4m+3}{2}\end{matrix}\right.\)
Khi đó:
\(A=|\frac{m^2+4m+3}{2}+2(m+1)|=\frac{|(m+1)(m+7)|}{4}=\frac{-(m+1)(m+7)}{4}\) do $m\in [-5;-1]$
Mà:
$-(m+1)(m+7)=-(m^2+8m+7)=9-(m^2+8m+16)=9-(m+4)^2\leq 9$ với mọi $m\in [-5;-1]$
$\Rightarrow A\leq \frac{9}{4}$
Vậy $A_{\max}=\frac{9}{4}$ khi $m=-4$
Với \(m\ne-1\)
\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-1\right)\left(m+5\right)>0\)
\(\Leftrightarrow\left(m-1\right)\left(m-1-m^2-6m-5\right)>0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+5m+6\right)< 0\Rightarrow\left[{}\begin{matrix}m< -3\\-2< m< 1\end{matrix}\right.\)
Đặt \(f\left(x\right)=\left(m+1\right)x^2-2\left(m-1\right)x+m^2+4m-5\)
Để pt có 2 nghiệm thỏa mãn \(x_2>x_1>2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x_1+x_2}{2}-2>0\\a.f\left(2\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{m-1}{m+1}-2>0\\\left(m+1\right)\left[4\left(m+1\right)-4\left(m-1\right)+m^2+4m-5\right]>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{-m-3}{m+1}>0\\\left(m+1\right)\left(m^2+4m+3\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3< m< -1\\\left\{{}\begin{matrix}m>-3\\m\ne-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-3< m< -1\)
Kết hợp điều kiện delta \(\Rightarrow-2< m< -1\)
\(\Delta'=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)=1>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm với \(m\ne1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\)
\(x_1+x_2+x_1x_2< 1\)
\(\Leftrightarrow\dfrac{2\left(m-2\right)}{m-1}+\dfrac{m-3}{m-1}< 1\)
\(\Leftrightarrow\dfrac{3m-7}{m-1}-1< 0\)
\(\Leftrightarrow\dfrac{2m-6}{m-1}< 0\)
\(\Leftrightarrow1< m< 3\)
Điều kiện: m\(\ne\)1.
\(\Delta\)'=(m-2)2-(m-1)(m-3)=1>0.
x1+x2+x1x2=\(\dfrac{2\left(m-2\right)}{m-1}+\dfrac{m-3}{m-1}\)=\(\dfrac{3m-7}{m-1}\)<1 \(\Rightarrow\) 3m-7<m-1 \(\Rightarrow\) m<3.
Vậy với m\(\in\)(-\(\infty\);3)\{1}, yêu cầu bài toán thỏa mãn.