\(m^2\) + 8 có nghiệm âm?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2020

\(2x+9=m^2+8\)

\(\Leftrightarrow x=\frac{m^2-1}{2}\)

Để phương trình có nghiệm âm thì \(m^2-1< 0\Leftrightarrow-1< m< 1\)

Vậy để phương trình có nghiệm âm thì -1 < m < 1

6 tháng 4 2018

a. Ta có x – 3 = 2m + 4

⇔ x = 2m + 4 + 3

⇔ x = 2m + 7

Phương trình có nghiệm số dương khi 2m + 7 > 0 ⇔ m > \(\dfrac{-7}{2}\)

b. Ta có: 2x – 5 = m + 8

⇔ 2x = m + 8 + 5

⇔ 2x = m + 13

⇔ x = \(\dfrac{-\left(x+13\right)}{2}\)

Phương trình có nghiệm số âm khi \(\dfrac{-\left(m+13\right)}{2}\) < 0 ⇔ m + 13 < 0 ⇔ m < -13

5 tháng 5 2017

a. \(x-2=3m+4\)

\(\Leftrightarrow x=3m+6\)

Để nghiệm của phương trình là \(x>3\) thì \(3m+6>3\Leftrightarrow3m>-3\Leftrightarrow m>-1\)

Vậy với \(m>-1\) thì nghiệm của phương trình \(x-2=3m+4\) lớn hơn 3.

b.\(3-2x=m-5\)

\(\Leftrightarrow-2x=m-8\)

\(\Leftrightarrow x=\dfrac{8-m}{2}\)

Để nghiệm của phương trình là \(x< -2\) thì \(\dfrac{8-m}{2}< -2\Leftrightarrow8-m< -4\Leftrightarrow m>12\)

Vậy với \(m>12\) thì phương trình \(3-2x=m-5\) có nghiệm nhỏ hơn -2

1 tháng 3 2020

1) Phương trình ban đầu tương đương :

\(\left(2021x-2020\right)^3=\left(2x-2\right)^3+\left(2019x-2018\right)^3\)

Đặt \(a=2x-2,b=2019x-2018\)

\(\Rightarrow a+b=2021x-2020\)

Khi đó phương trình có dạng :

\(\left(a+b\right)^3=a^3+b^3\)

\(\Leftrightarrow3ab\left(a+b\right)=0\)

\(\Leftrightarrow3\cdot\left(2x-2\right)\cdot\left(2019x-2018\right)\cdot\left(2021x-2002\right)=0\)

\(\Leftrightarrow\)Hoặc \(2x-2=0\) 

          Hoặc \(2019x-2018=0\)

          Hoặc \(2021x-2020=0\)

\(\Rightarrow x\in\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\) (thỏa mãn)

Vậy : phương trình đã cho có tập nghiệm \(S=\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\)

1 tháng 3 2020

\(x\left(2x-3\right)+x\left(x-m\right)=3x^2+x-m\)

\(\Leftrightarrow2x^2-3x+x^2-xm=3x^2+x-m\)

\(\Leftrightarrow-3x-xm=x-m\)

\(\Leftrightarrow4x+xm=m\Leftrightarrow x\left(4+m\right)=m\)

\(\Leftrightarrow x=\frac{m}{m+4}\)

Phương trình có nghiệm không âm \(\Leftrightarrow x\ge0\)

\(\Rightarrow\frac{m}{m+4}\ge0\)

Mà \(m+4>m\)nên \(\orbr{\begin{cases}m\ge0\\m+4\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge0\\m\le-4\end{cases}}\)

5 tháng 5 2017

Ta có: 2x – 5 = m + 8

      ⇔ 2x = m + 8 + 5

      ⇔ 2x = m + 13

      ⇔ x = (m + 13)/2

Phương trình có nghiệm số âm khi (m + 13)/2 < 0 ⇔ m + 13 < 0 ⇔ m < -13

5 tháng 6 2021

cái o kia bị lỗi mọi người bỏ đi

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow-2x+2mx-2=0\)

\(\Leftrightarrow2\left(mx-x-1\right)=0\)

\(\Leftrightarrow mx-x-1=0\)

\(\Leftrightarrow x\left(m-1\right)=1\)

\(\Leftrightarrow x=\frac{1}{m-1}\)

\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)

Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm

21 tháng 8 2016

1. Thay m = 2 vào phương trình (1) ta có.

            2x2 + 3x + 1 = 0 

Có ( a - b + c = 2 - 3 + 1 = 0)

=> Phương trình (1) có nghiệm x1 = -1 ; x2  = - 1/2

2. Phương trình (1) có   = (2m -1)2 - 8(m -1)

                                         = 4m2 - 12m + 9 = (2m - 3)2 \(\ge\) 0 với mọi m.

=> Phương trình (1) luôn có hai nghiệm x1; x2 với mọi giá trị của m.

+ Theo hệ thức Vi ét ta có 

\(\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}\) 

+ Theo điều kiện đề bài: 4x12  + 4x22  + 2x1x2 = 1

                           <=>  4(x1 + x2)2 - 6 x1x2 = 1     

                          <=>  ( 1 - 2m)2 - 3m + 3 = 1

                          <=>  4m2  - 7m + 3 = 0  

+ Có a + b + c = 0 => m1 = 1; m2 = 3/4 

Vậy với m = 1 hoặc m = 3/4 thì phương trình (1) có hai nghiệm x1; x2 thoả mãn:

4x12  + 4x22  + 2x1x2 = 1 

 

21 tháng 8 2016

hơi dư nhỉ?? để làm lại há

12 tháng 4 2023

a) \(x-3=2m+4\)

\(\Leftrightarrow x=2m+4+3\)

\(\Leftrightarrow x=2m+7\)

Phương trình có nghiệm dương khi \(2m+7>0\Leftrightarrow m>-\dfrac{7}{2}\)

b) \(2x-5=m+8\)

\(\Leftrightarrow2x=m+8+5\)

\(\Leftrightarrow2x=m+13\)

\(\Leftrightarrow x=\dfrac{m+13}{2}\)

Phương trình có nghiệm âm khi: \(\dfrac{m+13}{2}< 0\Leftrightarrow m< -13\)

c) \(x-2=3m+4\)

\(\Leftrightarrow x=3m+4+2\)

\(\Leftrightarrow x=3m+6\)

Phương trình có nghiệm lớn hơn 3 khi: \(3m+6>3\Leftrightarrow m>-1\)