K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

Đáp án D

Hàm số đồng biến trên khoảng (2;+∞)

y’ ≥ 0       x ϵ D (2;+∞)

 Ta có: (-m; +∞) = D (2;+∞)

ð m ≥ -2

Ta có: y’ =   m 2 − 3 ( x + m ) 2

ð  y’ ≥ 0  m ≥  3     hoặc m ≤ - 3

Vậy tập giá trị m thỏa mãn đề bài là:  m ≥ 3   hoặc -2 ≤ m ≤ - 3  

31 tháng 7 2018

Chọn đáp án B.

Hàm số đã cho đồng biến trên khoảng  - ∞ ; - 8

Do đó, số tập con gồm 3 phần tử của tập hợp A là  C 14 3 = 364

16 tháng 5 2019

Chọn B

12 tháng 8 2018

Đáp án B

Để ý thấy lời giải bài toán sai ở bước 3 do m có thể nhỏ hơn 0

11 tháng 11 2019

23 tháng 5 2019

6 tháng 10 2018

6 tháng 2 2019

Chọn B

Phương pháp: Sử dụng đạo hàm của hàm hợp để tính đạo hàm.

27 tháng 5 2018

Đáp án A

Phương pháp:

Xét tính đúng sai của các đáp án dựa vào các kiến thức hàm số đồng biến, nghịch biến trên khoảng xác định.

Cách giải:

*2 sai vì với c 1 < c 2 bất kỳ nằm trong a ; b ta chưa thể so sánh được f c 1 và  f c 2

*3 sai. Vì y' bằng 0 tại điểm đó thì chưa chắc đã đổi dấu qua điểm đó. VD hàm số  y = x 3

*4 sai: Vì thiếu điều kiện tại f ' x = 0 hữu hạn điểm.VD hàm số y = 1999 có y ' = 0 ≥ 0 nhưng là hàm hằng.

Chú ý khi giải:

HS thường nhầm lẫn:

- Khẳng định số 4 vì không chú ý đến điều kiện bằng 0 tại hữu hạn điểm.

- Khẳng định số 3 vì không chú ý đến điều kiện đổi dấu qua nghiệm.

9 tháng 1 2018