Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Để 2 đường thẳng đã cho trùng nhau khi và chỉ khi:
Hệ phương trình
có vô số nghiệm.
Thay (1) ; (2) vào (3) ta được : 4 (2+ 2t) -3 (1+ mt) + m= 0
Hay ( 3m- 8)t = m+5 (*)
Phương trình (*) có vô số nghiệm khi và chỉ khi
Đáp án A
Gọi M( 2+2t; 1+ mt) là điểm tùy ý thuộc ∆2
Để M nằm trên ∆1 khi và chi khi:
2( 2+ 2t) -3( 1+ mt) - m= 0 hay t( 4-3m) + 1- m= 0 n(*) luôn đúng với mọi t.
∆ 1 ≡ ∆ 2 ⇔ ( * ) thỏa với mọi t ⇔ 4 - 3 m = 0 1 - m = 0 (vô nghiệm)
Vậy không có m thỏa yêu cầu bài toán.
Lời giải:
Để hai đường thẳng trùng nhau thì trước tiên ta có: \(\frac{1}{m}=\frac{-m}{-1}=m(m\neq 0)\Leftrightarrow m=\pm 1\)
Nếu $m=1$ thì $(d_1): x-y=0$ và $(d_2): x-y=2$ không trùng nhau được
Nếu $m=-1$ thì $(d_1): x+y=0$ và $(d_2): x+y=0$ trùng nhau
Đáp án D.
Để 2 đường thẳng đã cho trùng nhau khi và chỉ khi
Tương đương m= 2.
Chọn C.
Lời giải:
Viết lại đt $(d_1)$:
$x+2y=m+1-6t+6t$
$\Leftrightarrow x+2y=m+1$
Ta thấy $M(-2,2)\in (d_2)$. Nếu $(d_2)\equiv (d_1)$ thì:
$M(-2,2)\in (d_1)$
$\Leftrightarrow -2+2.2=m+1$
$\Leftrightarrow m=1$
Thay giá trị $m$ vừa tìm được vào 2 ptđt ban đầu thì:
$(d_1)$: $x+2y=2$
$(d_2)$: \(\left\{\begin{matrix} x=-2-2t\\ y=2+t\end{matrix}\right.\)
$\Rightarrow x+2y=-2-2t+2(2+t)=2$ (trùng với $(d_1)$)
Vậy $m=1$
Thay (1) ; (2) vào (3) ta được 4( 1+ 2t) -3( 4+ mt) + 3m = 0
Hay ( 3m- 8) t= 3m- 8 (*)
Phương trình (*) có nghiệm tùy ý khi và chỉ khi 3m- 8= 0 hay m= 8/3.
Chọn B.