Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết ta gọi tọa độ điểm cắt nhau A(a;0)
Thay vào 2 hàm số ta có hệ:
\(\left\{{}\begin{matrix}12a+5-m=0\\3a+3+m=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15a+8=0\\m=-3a-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{8}{15}\\m=-\dfrac{7}{5}\end{matrix}\right.\)
Vậy \(m=-\dfrac{7}{5}\)
ây em nhầm trên trục hoành,giải lại:
Từ giả thiết ta gọi tọa độ điểm cắt nhau A(0;a)
Thay vào 2 hàm số ta có:
y=5-m và y=3+m
=>5-m=3+m
<=> 2m =2
<=>m=1
Vậy m=1
Để hai đồ thị hàm số y = 3 x – 2 m v à y = − x + 1 – m cắt nhau tại một điểm trên trục tung thì 3 ≠ − 1 − 2 m = 1 − m ⇔ m = − 1
Đáp án cần chọn là: C
Các hàm số y = 2x + (3 + m) và y = 3x + (5 – m) đều là hàm số bậc nhất đối với x vì hệ số của x đều khác 0. Đồ thị của chúng là các đường thẳng cắt trục tung tại điểm có tung độ là b. Do đó hai đường thẳng cắt nhau tại một điểm trên trục tung, chỉ khi tung độ góc của chúng bằng nhau: 3 + m = 5 – m => m = 1.
Vậy khi m = 1 thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung.
Các hàm số y = 2x + (3 +m) và y = 3x + (5-m) đều là hàm số bật nhất đối với x và hệ số x đều khác 0. Đồ thị của chúng là các đường thẳng cắt trục tung tại một điểm có tung độ là b. Do đó hai đường thẳng cắt nhau tại cùng một điểm trên trục tung, khi và chỉ khi tung độ gốc của chúng bằng nhau, nghĩa là:
3 + m = 5 – m ⇔ m = 1
Vậy khi m =1 thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung.
a)
đường thẳng (d1) song song với đường thẳng (d2) khi :
a = a' và b khác b'
suy ra :
\(m-1=3\) \(\Leftrightarrow m=4\)
vậy đường thẳng (d1) song song với đường thẳng (d2) khi m = 4
cắt nhau tại 1 điểm trên trục tung thì => x = 0
y = m + 2 và y = -5 - 2m
=> m + 2 = -5 - 2m
=> m + 2m = -2 - 5
=> 3m = -7
=> m = -7/3
Để hai đồ thị hàm số y = − 2 x + m + 2 v à y = 5 x + 5 – 2 m cắt nhau tại một điểm trên trục tung thì − 2 ≠ 5 m + 2 = 5 − 2 m ⇔ 3 m = 3 ⇔ m = 1
Đáp án cần chọn là: A
Để hai đường thẳng y=-x+(2m-3) và \(y=x+\left(\sqrt{2}m-1\right)\) cắt nhau tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}2m-3=\sqrt{2}m-1\\-1\ne1\left(đúng\right)\end{matrix}\right.\)
=>\(m\left(2-\sqrt{2}\right)=-1+3=2\)
=>\(m=\dfrac{2}{2-\sqrt{2}}=2+\sqrt{2}\)