K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 4 2020

Hệ phương trình tọa độ giao điểm A của d1 và d2:

\(\left\{{}\begin{matrix}3x-4y+15=0\\5x+2y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\) \(\Rightarrow A\left(-1;3\right)\)

Để 3 đường thẳng đồng quy \(\Leftrightarrow\left(d_3\right)\) đi qua A và \(d_3\) ko trùng \(d_1;d_2\)

\(d_3\) qua A \(\Leftrightarrow-m-4.3+15=0\Rightarrow m=3\)

\(\Rightarrow d_3:\) \(3x-4y+15=0\) (không thỏa mãn do trùng pt \(d_1\))

Vậy không tồn tại m thỏa mãn

Bài 2: 

Tọa độ giao điểm của Δ1 và Δ2 là:

\(\left\{{}\begin{matrix}2x+y=4\\5x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{9}\\y=\dfrac{26}{9}\end{matrix}\right.\)

Thay x=5/9 và y=26/9 vào Δ3, ta được:

\(\dfrac{5}{9}m+\dfrac{26}{3}-2=0\)

=>5/9m=-20/3

hay m=-12

13 tháng 1 2018

bài 1)

ta có đường thẳng : \(\Delta_1:mx+y+8=0\)\(\Leftrightarrow\) với đường thẳng \(\Delta_1:y=-mx-8\)

và đường thẳng : \(\Delta_2:x-y+m=0\)\(\Leftrightarrow\) với đường thẳng \(\Delta_1:y=x+m\)

ta lại có : 2 đường thẳng \(\Delta_1\)\(\Delta_2\) vuông góc với nhau khi và chỉ khi tích hệ số góc của chúng bằng \(-1\)

\(\Leftrightarrow-m.1=-1\Leftrightarrow m=1\) vậy \(m=1\)

13 tháng 1 2018

bài 2)

ta có : \(\left\{{}\begin{matrix}\Delta_1:2x+y-4=0\Leftrightarrow\Delta_1:y=-2x+4\\\Delta_2:5x-2y+3=0\Leftrightarrow\Delta_2:y=\dfrac{5}{2}x+\dfrac{3}{2}\\\Delta_3:mx+3y-2=0\Leftrightarrow\Delta_3:y=\dfrac{-m}{3}x+\dfrac{2}{3}\end{matrix}\right.\)

ta có : \(-2x+4=\dfrac{5}{2}x+\dfrac{3}{2}\Leftrightarrow\dfrac{5}{2}x+2x=4-\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{9}{2}x=\dfrac{5}{2}\Leftrightarrow x=\dfrac{5}{2}:\dfrac{9}{2}=\dfrac{5}{9}\)

khi \(x=\dfrac{5}{9}\Rightarrow y=-2x+4=-2.\dfrac{5}{9}+4=\dfrac{26}{9}\)

\(\Rightarrow\) 2 đường thẳng \(\Delta_1\)\(\Delta_2\) cắt nhau tại điểm có tạo độ là \(\left(\dfrac{5}{9};\dfrac{26}{9}\right)\)

thế \(x=\dfrac{5}{9};y=\dfrac{26}{9}\) và đường thẳng \(\Delta_3\)

ta có : \(\) \(\dfrac{26}{9}=\dfrac{-m}{3}.\dfrac{5}{9}+\dfrac{2}{3}\Leftrightarrow\dfrac{26}{9}=\dfrac{-5m}{27}+\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{-5m}{27}=\dfrac{26}{9}-\dfrac{2}{3}=\dfrac{20}{9}\Leftrightarrow\left(-5m\right).9=27.20\)

\(\Leftrightarrow-45m=540\Leftrightarrow m=\dfrac{540}{-45}=-12\) vậy \(m=-12\)

NV
20 tháng 4 2020

Bài 3:

Gọi M là giao điểm \(d_1;d_2\Rightarrow\) tọa độ M là nghiệm:

\(\left\{{}\begin{matrix}x+y-1=0\\x-3y+3=0\end{matrix}\right.\) \(\Rightarrow M\left(0;1\right)\)

Gọi \(A\left(1;0\right)\) là 1 điểm thuộc \(d_1\)

\(d_3\) đối xứng \(d_2\) qua \(d_1\Leftrightarrow d_1\) là phân giác góc tạo bởi \(d_2;d_3\)

\(\Rightarrow d_3\) qua M và \(d\left(A;d_3\right)=d\left(A;d_2\right)\)

Gọi pt \(d_3\) có dạng \(a\left(x-0\right)+b\left(y-1\right)=0\Leftrightarrow ax+by-b=0\)

Theo công thức khoảng cách:

\(\frac{\left|a.1+b.0-b\right|}{\sqrt{a^2+b^2}}=\frac{\left|1-3.0+3\right|}{\sqrt{1+3^2}}\Leftrightarrow\frac{\left|a-b\right|}{\sqrt{a^2+b^2}}=\frac{\sqrt{8}}{\sqrt{5}}\)

\(\Leftrightarrow5\left(a-b\right)^2=8\left(a^2+b^2\right)=3a^2+10ab+3b^2=0\)

\(\Leftrightarrow\left(a+3b\right)\left(3a+b\right)=0\Rightarrow\left[{}\begin{matrix}a=-3b\\b=-3a\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}-3bx+by-b=0\\ax-3ay+3a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x-y+1=0\\x-3y+3=0\end{matrix}\right.\)

NV
20 tháng 4 2020

Bài 2:

a/ Gọi d' là đường thẳng qua M và vuông góc d

\(\Rightarrow d'\) nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình d':

\(2\left(x-2\right)-1\left(y-5\right)=0\Leftrightarrow2x-y+1=0\)

H là giao điểm của d và d' nên tọa độ H là nghiệm:

\(\left\{{}\begin{matrix}x+2y-2=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow H\left(0;1\right)\)

b/ M' đối xứng M qua d \(\Leftrightarrow H\) là trung điểm \(MM'\)

\(\Rightarrow\left\{{}\begin{matrix}x_{M'}=2x_H-x_M\\y_{M'}=2y_H-y_M\end{matrix}\right.\) \(\Rightarrow M'\left(-2;-3\right)\)

c/ d' đối xứng d qua M \(\Rightarrow\) phương trình d' có dạng: \(x+2y+c=0\) với \(c\ne-2\)

Ta có: \(d\left(M;d\right)=d\left(M;d'\right)\)

\(\Leftrightarrow\frac{\left|2+2.5-2\right|}{\sqrt{1^2+2^2}}=\frac{\left|2+2.5+c\right|}{\sqrt{1^2+2^2}}\)

\(\Rightarrow\left|c+12\right|=10\Rightarrow\left[{}\begin{matrix}c=-2\left(l\right)\\c=-22\end{matrix}\right.\)

Phương trình d': \(x+2y-22=0\)

11 tháng 4 2019

ta có : I = d1 giao d2

=> I(-1,3)

Có (C) tiếp xúc vs dthg d3

=> d(I,d3)=\(\frac{\left|3.\left(-1\right)+4.3-2\right|}{\sqrt{3^2+4^2}}\)=\(\frac{7}{5}\) =R

=> ptr (C): (x+1)2+(y-3)2=\(\frac{49}{25}\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

Bài 1:
Gọi $I$ là tâm đường tròn. Vì $I$ nằm trên đt \(\Delta: 3x-y+7=0\) nên $I$ có tọa độ $(a,3a+7)$

Đường tròn tiếp xúc với trục Ox nên:

\(d(I,Ox)=R=1\Leftrightarrow |3a+7|=1\Rightarrow \left[\begin{matrix} a=-2\\ a=\frac{-8}{3}\end{matrix}\right.\)

Nếu \(a=-2\Rightarrow I(-2, 1)\). PTĐTr là:

\((x+2)^2+(y-1)^2=1\)

Nếu \(a=-\frac{8}{3}\Rightarrow I(\frac{-8}{3}, -1)\). PTĐTr là:

\((x+\frac{8}{3})^2+(y+1)^2=1\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

Bài 2:

Ta viết lại pt đường tròn:

\(x^2+y^2-2x-4y-4=0\)

\(\Leftrightarrow (x-1)^2+(y-2)^2-9=0\)

\(\Leftrightarrow (x-1)^2+(y-2)^2=9\)

Vậy đường tròn $(C)$ có tâm $I(1,2)$ và bán kính $R=3$

Có : \(d(I,(d))=\frac{|3x_I+4y_I+4|}{\sqrt{3^2+4^2}}=\frac{|3.1+4.2+4|}{5}=3=R_{(C)}\)

Do đó đường thẳng (d) tiếp xúc với đường tròn $(C)$

Bài 1: Cho đường thẳng d : (1 - m2)x + 2my + m2 - 4m + 1 = 0. Viết phương trình đường tròn (C) luôn tiếp xúc với d với mọi m. Bài 2: Cho (Cα) : (x2 + y2)sin α = 2( x cos α + y sin α - cos α) (α ≠ k π) a, CMR: (Cα) luôn là một đường tròn. Định tâm và bán kính của (Cα). b, CMR: (Cα) có một tiếp tuyến cố định mà ta sẽ xác định phương trình. Bài 3: Biện luận tùy theo m sự tương giao của đường thẳng...
Đọc tiếp

Bài 1: Cho đường thẳng d : (1 - m2)x + 2my + m2 - 4m + 1 = 0. Viết phương trình đường tròn (C) luôn tiếp xúc với d với mọi m.

Bài 2: Cho (Cα) : (x2 + y2)sin α = 2( x cos α + y sin α - cos α) (α ≠ k π)

a, CMR: (Cα) luôn là một đường tròn. Định tâm và bán kính của (Cα).

b, CMR: (Cα) có một tiếp tuyến cố định mà ta sẽ xác định phương trình.

Bài 3: Biện luận tùy theo m sự tương giao của đường thẳng (△) và đường tròn (C).

a, (C): x2 + y2 + 2x - 4y + 4 = 0 và (△): mx - y + 2 = 0.

b, (C): x2 + y2 - 4x + 6y + 3 = 0 và (△): 3x - y + m = 0.

Bài 4: Cho đường tròn (C): x2 + y2 - 2x - 4y - 4 = 0 và (C'): x2 + y2 + 6x - 2y + 1 = 0.

a, Chứng minh (C) và (C') cắt nhau tại hai điểm A, B.

b, Cho điểm M(4;1). Chứng minh qua M có hai tiếp tuyến đến (C). Gọi E, F là hai tiếp điểm của hai tiếp tuyến trên với (C). Hãy lập phương trình đường tròn (C) ngoại tiếp với △ MEF.

0