Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: A = \(\frac{2017-2n}{8n-4}\)
=> 4A = \(\frac{8068-8n}{8n-4}=\frac{-\left(8n-4\right)+8064}{8n-4}=-1+\frac{8064}{8n-4}\)
Để A đạt giá trị lớn nhất <=> 4A đạt giá trị lớn nhất
<=> \(-1+\frac{8064}{8n-4}\) đạt giá trị lớn nhất
<=> 8n - 4 đạt giá trị nhỏ nhất
Do n \(\in\)Z => 8n - 4 = 4 => 8n = 8 => n = 1
Thay n = 1 vào biểu thức 4A, ta được :
4A = \(-1+\frac{8064}{8.1-4}=-1+\frac{8064}{4}=-1+2016=2015\)
<=> A = \(\frac{2015}{4}\) <=> Max của A = 2015/4 tại n = 1
Để M lớn nhất thì 11 - x ( mẫu số ) phải nhỏ nhất
=> 11 - x = 1
=> x = 10
=> \(M=\frac{2018-10}{11-10}=2008\)
Vậy,.....
Để \(\frac{2018-x}{11-x}\) có GTLN
thì \(11-x\) fải có GTNN
Mà \(11-x\ne0\)
=>11-x=1
=>x=10
=>\(M=\frac{2018-x}{11-x}=\frac{2018-10}{11-10}=2008\)
Vậy GTLN của M là 2008 tại x=10
a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)
Hay : P \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)
Vậy Pmin = 0 tại x = -3/2
b) Ta có: \(\left|3-x\right|\ge0\forall x\)
=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)
hay P \(\ge\)2/5 \(\forall\)x
Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3
Vậy Pmin = 2/5 tại x = 3
a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x
=> P>=0 với mọi x
P=0 khi x+3/2=0 <=> x=-3/2
Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2
\(A=\frac{2020}{9-x}\left(x\ne9\right)\)
Để A đạt GTLN thì 9-x bé nhất
=> 9-x=1
=> x=8
Vậy \(A_{max}=\frac{2020}{9-8}=2020\)tại x=8
Hok Tốt !!!!!!!!!!!!!!
\(A=\frac{2020}{9-x}\)
A đạt giá trị lớn nhất
\(\Leftrightarrow\frac{2020}{9-x}\) lớn nhất
\(9-x\) nhỏ nhất ( vì 2020 là hằng số )
Vì 9 - x khác 0
\(\Rightarrow9-x=1\)
\(x=9-1\)
\(x=8\)
\(A=\frac{2020}{9-x}=\frac{2020}{9-8}=2020\)
Vật Giá trị lớn nhất cả A là 2020 khi và chỉ khi x = 8
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách
OK<3
1a/ Để B có nghĩa thì x+1≥0 => x≥-1
b/ B>2
=> \(\sqrt{x+1}>2\)
\(\Rightarrow x+1>4\Rightarrow x>3\)
2a/ Để A có nghĩa thì 2003-x≥0 => x≤2003
b/ Ta có \(\sqrt{2003-x}\ge0\forall x\)
=>A≥2004
MinA=2004 khi x=2003
Chúc bạn học tốt!