Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(n^4+4\)
\(=\left(n^4-2n^3+2n^2\right)+\left(2n^3-4n^2+4n\right)+\left(2n^2-4n+4\right)\)
\(=n^2\left(n^2-2n+2\right)+2n\left(n^2-2n+2\right)+2\left(n^2-2n+2\right)\)
\(=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)
Làm nốt
Ta có:\(A=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)
Để A là số nguyên tố nên 1 trong 2 thừa số phải bằng 1 và số còn lại phải là số nguyên tố
Do \(n^2-2n+2< n^2+2n+2\)nên \(n^2-2n+2=1\)
\(\Leftrightarrow n^2-2n+1=0\)
\(\Leftrightarrow\left(n-1\right)^2=0\)
\(\Leftrightarrow n=1\)
Thay n=1 vào \(n^2+2n+2\) ta được \(n^2+2n+2=5\) là số nguyên tố
Vậy n=1
\(n^3-4n^2+4n-1=n^3-1-4n^2-4n=\left(n-1\right)\left(n^2+n+1\right)-4n\left(n-1\right)\)
\(=\left(n-1\right)\left(n^2-3n+1\right)\)
Để \(\left(n-1\right)\left(n^2-3n+1\right)\) là số nguyên tố <=> \(n-1=0\) hoặc \(n^2-3n+1=0\)
\(\Rightarrow n=1\)
Vậy \(n=1\) thì \(n^3-4n^2+4n-1\)là số nguyên tố
Gọi UCLN\(\left(3n+1,4n+1\right)=d\)
=) \(3n+1⋮d
\)=) \(4\left(3n+1\right)⋮d\)=) \(12n+4⋮d\)
\(4n+1⋮d\)=) \(3\left(4n+1\right)⋮d\)=) \(12n+3⋮d\)
=) \(\left(12n+4\right)-\left(12n+3\right)⋮d\)
=) \(12n+4-12n-3⋮d\)
=) \(1⋮d\)=) \(d\inƯ\left(1\right)=1\)
=) UCLN\(\left(3n+1,4n+1\right)=1\)
Vậy \(3n+1,4n+1\)là 2 số nguyên tố cùng nhau ( ĐPCM )
Gọi các ước nguyên tố của số N là p ; q ; r và p < q < r
\(\Rightarrow p=2;q+r=18\Rightarrow\orbr{\begin{cases}q=5;r=13\\q=7;r=11\end{cases}\Rightarrow\orbr{\begin{cases}N=2^a.5^b.13^c\\N=2^a.7^b.11^c\end{cases}}}\)
Với a ; b; c \(\in\)N và \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=12\Rightarrow12=2.2.3\)
Do đó N có thể là \(2^2.5.13;2.5^2.13;2.5.13^2;2^2.7.11;2.7^2.11;2.7.11^2\)
N nhỏ nhất nên \(N=2^2.5.13=260\)
a=1
làm chi tiết ra bạn ơii