Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần dư của phép chia đa thức x 4 + a x 2 + 1 chia hết cho x 2 + 2x + 1 là
R = (-4 – 2a)x – a – 2
Để phép chia trên là phép chia hết thì R = 0 ó (-4 – 2a)x – a – 2 = 0 với mọi x
ó - 2 a - 4 = 0 - a - 2 = 0 ó a = -2
Đáp án cần chọn là: A
a: \(\dfrac{2x^4-3x^3+4x^2+1}{x^2-1}=\dfrac{2x^4-2x^2-3x^3+3x+6x^2-6-3x+7}{x^2-1}\)
\(=2x^2-3x+6+\dfrac{-3x+7}{x^2-1}\)
Để dư bằng 0 thì -3x+7=0
=>x=7/3
b: \(\dfrac{x^5+2x^4+3x^2+x-3}{x^2+1}\)
\(=\dfrac{x^5+x^3+2x^4+2x^2-x^3-x+x^2+1+2x-4}{x^2+1}\)
\(=x^3+2x^2-x+1+\dfrac{2x-4}{x^2+1}\)
Để đư bằng 0 thì 2x-4=0
=>x=2
Lời giải:
$A(x)=(x^3-x)+(ax^2-a)=x(x^2-1)+a(x^2-1)=(x+a)(x^2-1)$
$=(x+a)B(x)$
Do đó $A(x)$ luôn chia hết cho $B(x)$ với mọi $a$
Đặt phép chia thường thì ta có:
\(x^3+ax^2+2bx+1=p.q+r=\left(x^2+3x+1\right)\left(x+a-3\right)+\left[\left(2b-3a+8\right)x+\left(4-a\right)\right]\)
Đa thức dư bằng 0 với mọi x nên:
\(\hept{\begin{cases}2b-3a+8=0\\4-a=0\end{cases}\Rightarrow\hept{\begin{cases}2b-3.4+8=0\\a=4\end{cases}\Rightarrow}\hept{\begin{cases}2b-4=0\\a=4\end{cases}\Rightarrow}\hept{\begin{cases}b=2\\a=4\end{cases}}}\)
Vậy \(a=2,b=4\)thì \(\left(x^3+ax^2+2bx+1\right)⋮\left(x^2+3x+1\right)\)
Chusc bajn hojc toost.