K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2020

a, Thay m=1 vào phương trình, ta được: x2-3x+2=0

<=> x2-2x-x+2=0

<=> x(x-2) - (x-2)=0

<=> (x-2)(x-1)=0

<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

Vậy phương trình có tập nghiệm S={1;2}

b, Với m khác 0, phương trình trở thành phương trình bậc 2 có:

Delta = (2m+1)2 - 4m(m+1)

         = 4m2+4m+1 - 4m2-4m

         = 1>0

Vậy phương trình luôn có 2 nghiệm phân biệt với m khác 0.

c, Vì phương trình có delta>0 với mọi giá trị của m khác 0 nên không có giá trị nào của m để phương trình có nghiệm kép.

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

19 tháng 5 2015
theo de bai a=8 hay x,^2+x,,^2-6x,x,, =8 <=>(x,+x,,)^2-8x,x,,=8 (*) theo vi-et : S= m;P=m-1 thay vao pt (*) dc m^2-8m+8=8 <=>m^2-8m=0 <=>m(m-8)=0 <=>m=0 hoacm=8 dung k...x, la x1;x,,la x2 theo
20 tháng 4 2018

bài 1: a) \(mx^2-2\left(m-1\right)x+m+1=0\)

\(\Delta'=\left[-\left(m-1\right)\right]^2-m\left(m+1\right)\)

\(\Delta'=m^2-2m+1-m^2-m\)

\(\Delta'=-3m+1\)

để pt đã cho vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m+1< 0\Leftrightarrow m>\dfrac{1}{3}\)

b) \(3x^2+mx+m^2=0\)

\(\Delta=m^2-4.3.m^2\)

\(\Delta=m^2-12m^2=-11m^2\)

để pt đã cho vô nghiệm thì \(\Delta< 0\Leftrightarrow-11m^2< 0\Leftrightarrow m>0\)

20 tháng 4 2018

c) \(m^2.x^2-2m^2x+4m^2+6m+3=0\)

\(\Delta'=\left(-m^2\right)^2-m^2.\left(4m^2+6m+3\right)\)

\(\Delta'=m^4-4m^4-6m^3-3m^2\)\(\Delta'=-3m^4-6m^3-3m^2\)

để pt vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m^4-6m^3-3m^2< 0\)

\(\Leftrightarrow-3m^2.\left(m^2+2m+1\right)< 0\)

\(\Leftrightarrow-3m^2.\left(m+1\right)^2< 0\)

\(\Leftrightarrow-3m^2< 0\) ( vì \(\left(m+1\right)^2>0\forall m\ne-1\) )

\(\Leftrightarrow m>0\)

vậy \(m>0\)\(m\ne1\)

17 tháng 3 2018

a) \(\Delta=m^2-8\)

pt có ng kép \(\Leftrightarrow\Delta=0\Leftrightarrow m^2-8=0\Leftrightarrow\left[{}\begin{matrix}m=-\sqrt{8}\left(N\right)\\m=\sqrt{8}\left(N\right)\end{matrix}\right.\)

Kl: m= +-căn 8

b) \(\Delta'=\left(m-4\right)^2-\left(m^2+m+3\right)=-9m+13\)

pt có ng kép \(\Leftrightarrow\Delta=0\Leftrightarrow-9m+13=0\Leftrightarrow m=\dfrac{13}{9}\left(N\right)\)

Kl: m= 13/9

c) \(\Delta'=\left(-2\right)^2-4m^2=-4m^2+4\)

\(\Leftrightarrow\Delta=0\Leftrightarrow-4m^2+4=0\Leftrightarrow\left[{}\begin{matrix}m=-1\left(N\right)\\m=1\left(N\right)\end{matrix}\right.\)

Kl : m= +-1

1 tháng 4 2019

Bài 2. \(x^2-mx+m-1=0\)(1)

a) Phương trình (1) có: \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0,\forall m\)

Suy ra phương trình luôn có nghiệm với mọi m

b) Áp dụng định lí Vi ét ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)

Ta có: \(x_1^2-x_2^2+x_1+x_2=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)+\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=0\)

<=>\(\orbr{\begin{cases}x_1+x_2=0\\x_1-x_2+1=0\end{cases}}\)

+) Với \(x_1+x_2=0\Leftrightarrow m=0\)(tm)

+) Với \(x_1-x_2+1=0\Leftrightarrow x_1=-1+x_2\)

Ta có \(x_1+x_2=m\Leftrightarrow-1+x_2+x_2=m\Leftrightarrow x_2=\frac{m+1}{2}\)

=> \(x_1=-1+x_2=-1+\frac{m+1}{2}=\frac{m-1}{2}\)

ta lại có: \(x_1.x_2=m-1\Leftrightarrow\frac{m+1}{2}.\frac{m-1}{2}=m-1\Leftrightarrow\orbr{\begin{cases}m-1=0\\\frac{m+1}{4}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}}\)(TM)

Vậy 

1 tháng 4 2019

Sửa lại :

2b) 

\(x_1^2-x_2^2+x_1-x_2=0\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x_1-x_2=0\\x_1+x_2+1=0\end{cases}}\)

Với \(x_1-x_2=0\Leftrightarrow x_1=x_2\)

Ta có:\(x_1+x_2=m\Leftrightarrow2x_1=m\Leftrightarrow x_1=x_2=\frac{m}{2}\)

\(x_1.x_2=m-1\Leftrightarrow\frac{m}{2}.\frac{m}{2}=m-1\Leftrightarrow m^2=4m-4\Leftrightarrow\left(m-2\right)^2=0\Leftrightarrow m=2\)

+) Với \(x_1+x_2+1=0\Leftrightarrow m+1=0\Leftrightarrow m=-1\)

Vậy m=-1 hoặc m=2