K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

a) Trùng nhau :\(\Leftrightarrow\hept{\begin{cases}k-2=6-2k\\m-1=5-2m\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}k=\frac{8}{3}\\m=2\end{cases}}\)

b) Song song \(\Leftrightarrow\hept{\begin{cases}k-2=6-2k\\m-1\ne5-2m\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}k=\frac{8}{3}\\m\ne2\end{cases}}\)

c) Cắt nhau\(\Leftrightarrow k-2\ne6-2k\)\(\Leftrightarrow k\ne\frac{8}{3}\)

d) Vuông góc với nhau \(\Leftrightarrow\left(k-2\right).\left(6-2k\right)=-1\)

\(\Leftrightarrow-2k^2+10k-12=-1\)

\(\Leftrightarrow2k^2-10k+12=1\)

\(\Leftrightarrow2k^2-10k+11=0\)

\(\Leftrightarrow\orbr{\begin{cases}k=\frac{5+\sqrt{3}}{2}\\k=\frac{5-\sqrt{3}}{2}\end{cases}}\)

a: Để hai đường trùng nhau thì k-2=6-2k và -2m+5=m-1

=>3k=8 và -3m=-6

=>k=8/3 và m=2

b: Để hai đường song song thì k-2=6-2k và -2m+5<>m-1

=>k=8/3 và m<>2

c: Để hai đường cắt nhau thì k-2<>6-2k

=>k<>8/3

d: Để hai đường cắt nhau trên trục tung thì k-2<>6-2k và -2m+5=m-1

=>m=2 và k<>8/3

e: m=3

=>(d1): y=(k-2)x+2 và (d2): y=(6-2k)x-1

Để hai đường cắt nhau trên trục hoành thì k-2<>6-2k và -2/k-2=1/6-2k

=>k<>8/3 và -12+4k=k-2

=>3k=10 và k<>8/3

=>k=10/3

AH
Akai Haruma
Giáo viên
11 tháng 1 2022

Lời giải:

Để hai đường thẳng song song nhau thì:

\(\left\{\begin{matrix} k+3=4\\ m+1\neq 3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m\neq 1\end{matrix}\right.\)

Để hai đt cắt nhau thì: \(\left\{\begin{matrix} k+3\neq 4\\ m\in\mathbb{R}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k\neq 1\\ m\in\mathbb{R}\end{matrix}\right.\)

Để hai đt trùng nhau thì: \(\left\{\begin{matrix} k+3=4\\ m+1=3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m=1\end{matrix}\right.\)

Để hai đt cắt nhau tại 1 điểm trên trục tung thì:

PT hoành độ giao điểm $(k+3)x+m+1=4x+3-m$ nhận $x=0$ là nghiệm 

$\Leftrightarrow x(k-1)+(2m-2)=0$ nhận $x=0$ là nghiệm 

$\Leftrightarrow 2m-2=0$

$\Leftrightarrow m=1$

Vậy $m=1$ và $k\in\mathbb{R}$ bất kỳ.

Để 2 đt vuông góc thì $(k+3).4=-1$ và $m$ bất kỳ 

$\Leftrightarrow k=\frac{-13}{4}$ và $m$ bất kỳ.

Hai đường thẳng trùng nhau khi a = a' và b = b' tức là:

    2 = 2m + 1 và 3k = 2k – 3

HT

2 tháng 10 2021

1512959464_11.jpgcâu a đây mong bạn tham thảo

9 tháng 12 2017

(1;1)

9 tháng 12 2017

(1;1)

7 tháng 10 2017

Hàm số y = 2x + 3k có các hệ số a = 2, b = 3k.

Hàm số y = (2m + 1)x + 2k – 3 có các hệ số a' = 2m + 1, b' = 2k – 3.

Hai hàm số đã cho là hàm số bậc nhất nên 2m + 1 ≠ 0

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Hai đường thẳng cắt nhau khi a ≠ a' tức là:

    2 ≠ 2m + 1 ⇔ 2m ≠ 1

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Hai đường thẳng song song với nhau khi a = a' và b ≠ b' tức là:

    2 = 2m + 1 và 3k ≠ 2k – 3

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Hai đường thẳng trùng nhau khi a = a' và b = b' tức là:

    2 = 2m + 1 và 3k = 2k – 3

Để học tốt Toán 9 | Giải bài tập Toán 9

20 tháng 12 2017

a, cắt : a khác a'
b, b= b'; a khác a'
c, a=a' ; b khác b'
d, a*a'= -1
e, a= a' ;b= b'

23 tháng 4 2017

a) Hai đường thẳng cắt nhau khi 2m + 1 ≠ 2 hay m ≠ 0,5, k túy ý.

b) Hai đường thẳng song song với nhau khi 2m + 1 = 2 và 3k ≠ 2k - 3 hay khi m = 0,5 và k ≠ -3.

c) Hai đường thẳng trùng nhau khi 2m + 1 = 2 và 3k = 2k - 3 hay khi m = 0,5 và k = -3.

23 tháng 4 2017

Bài giải:

a) Hai đường thẳng cắt nhau khi 2m + 1 ≠ 2 hay m ≠ 0,5, k túy ý.

b) Hai đường thẳng song song với nhau khi 2m + 1 = 2 và 3k ≠ 2k - 3 hay khi m = 0,5 và k ≠ -3.

c) Hai đường thẳng trùng nhau khi 2m + 1 = 2 và 3k = 2k - 3 hay khi m = 0,5 và k = -3

2 tháng 10 2021

Anser reply image

Lai cho cá vàng đi ạ

 
2 tháng 10 2021

a) Hàm số \(y=2x+3k\) có các hệ số \(a=2,b=3k\)

Hàm số \(y=\left(2m+1\right)x+2k-3\) có các hệ số  \(a'=2m+1,b'=2k-3\)

Hai hàm số đã cho là hàm số bậc nhất nên \(2m+1\ne0\)

                                                                      \(\Leftrightarrow m\ne-\frac{1}{2}\)

Hai đường thẳng song song với nhau khi \(a=a'\) và \(b\ne b'\) tức là:

         \(2=2m+1\) và \(3k\ne2k-3\)

Kết hợp với điều kiện trên ta có:  \(m=\frac{1}{2}.k\ne-3\)

 b) Hai đường thẳng song song:

\(\Leftrightarrow\hept{\begin{cases}2=2m+1\\3k\ne2k-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\k\ne-3\end{cases}}\)

c) Hai đường thẳng trùng nhau:

\(\Leftrightarrow\hept{\begin{cases}2=2m+1\\3k=2k-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\k=-3\end{cases}}\)