Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Bạn quy đồng vế phải ta được vế trái.
B)Bạn tiếp tục quy đồng vế phải ra vế trái.
C)Ta có:
\(\frac{1007}{2}\times\left(\frac{4}{1\times3\times5}+\frac{4}{3\times5\times7}...+\frac{4}{49\times51\times53}\right)\)
\(\frac{1007}{2}\times\left(\frac{1}{1\times3}-\frac{1}{3\times5}+\frac{1}{3\times5}-\frac{1}{5\times7}+...+\frac{1}{49\times51}-\frac{1}{51\times53}\right)\)
\(\frac{1007}{2}\times\left(\frac{1}{3}-\frac{1}{2703}\right)=\frac{2850}{17}\)
tham khảo ở đây : Câu hỏi của Vũ Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath
a) Vế trái \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)
\(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)
b) Vế trái
\(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)
a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :
\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)
\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)
b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)
\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)
\(S=a+a^3+...+a^{2n+1}\)
\(S.a^2=a^3+a^5+...+a^{2n+1}+a^{2n+3}\)
\(\Rightarrow S\left(a^2-1\right)=a^{2n+3}-a\)
\(\Rightarrow S=\dfrac{a^{2n+3}-a}{a^2-1}\)
\(S_1=1+a^2+...+a^{2n}\)
\(S_1.a^2=a^2+a^4+...+a^{2n}+a^{2n+2}\)
\(\Rightarrow S_1\left(a^2-1\right)=a^{2n+2}-1\)
\(\Rightarrow S_1=\dfrac{a^{2n+2}-1}{a^2-1}\)