Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\le a,b,c\le2\)
\(\Rightarrow1-a\le0\Rightarrow c\left(1-a\right)\le0\Rightarrow4+c-ca\le4\)
\(\Rightarrow\frac{1}{4+c-ca}\ge\frac{1}{4}\)
CM tương tự \(\Rightarrow\frac{1}{4+a-ab}+\frac{1}{4+b-bc}+\frac{1}{4+c-ca}\ge\frac{3}{4}\)
Ta cần CM \(\frac{3}{4}\ge\frac{3}{3+abc}\)
Thật vậy \(a,b,c\ge1\Rightarrow abc\ge1\)\(\Rightarrow3+abc\ge4\Rightarrow\frac{3}{4}\ge\frac{3}{3+abc}\)
Dấu "="xảy ra khi a=b=c=1
Dat \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Ta co: \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge8\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Ta d̃i CM:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Ta co:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\left(dpcm\right)\)
Dau '=' xay ra khi \(a=b=c\)
Không mất tính tổng quát giả sử \(a\ge b\ge c\). Khi đó, ta dễ dàng có được \(a^n\ge b^n\ge c^n\)và \(\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\)
Áp dụng bất đẳng thức Chebyshev, ta có: \(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\ge\frac{1}{3}\left(a^n+b^n+c^n\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
P/s: Đây là một bước nhỏ trong một cách chứng minh dạng tổng quát của bđt Nesbit
Học sinh trên OLM đúng là dốt, chẳng ai làm được bài này....
Không mất tính tổng quát giả sử \(1\le a\le b\le c\le2\)\(\Rightarrow\hept{\begin{cases}\frac{a}{b}\le1\\\frac{b}{c}\le1\end{cases}\Rightarrow\left(1-\frac{a}{b}\right)\left(1-\frac{b}{c}\right)\ge0}\)(1)
Tương tự ta có \(\left(1-\frac{b}{a}\right)\left(1-\frac{c}{b}\right)\ge0\)(2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a}{b}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{b}\right)\le2\left(\frac{a}{c}+\frac{c}{a}\right)\)
\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{a}{c}\right)+3\le5+2\left(\frac{a}{c}+\frac{c}{a}\right)\)(2)
Mà :\(\left(2-\frac{a}{c}\right)\left(\frac{1}{2}-\frac{a}{c}\right)\le0\Rightarrow\frac{1}{2}-\frac{a}{c}\le0\Leftrightarrow\frac{1}{2}\le\frac{a}{c}\le1\Rightarrow\frac{a}{c}+\frac{c}{a}\le\frac{5}{2}\)
\(\left(3\right)\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\le5+\frac{2.5}{2}=10\Rightarrow dpcm\)
Dấu= xảy ra khi \(\left(a,b,c\right)\in\left\{\left(1,1,2\right);\left(2,2,1\right)\right\}\)và các cặp hoán vị của nó
\(\)
1/ Cho \(a,b,c\ge1\)Chứng minh rằng:
\(\frac{1}{a\left(b+1\right)}+\frac{1}{b\left(c+1\right)}+\frac{1}{c\left(a+1\right)}\ge\frac{3}{1+abc}\)
2/ Cho \(a,b,c,d\in\left[0;1\right].\)Chứng minh rằng:
\(\frac{a}{bc+cd+db+1}+\frac{b}{cd+da+ac+1}+\frac{c}{da+ab+bd+1}+\frac{d}{ab+bc+ca+1}\le\frac{3}{4}+\frac{1}{4abcd}.\)
3/ Giả sử\(a,b>0\)và