Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tương thẳng cô-si 3 số cho giả thiết và cái gt đi,t dùng đt ko làm đc
\(A=a^3+b^3+c^3+a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)\)
\(A=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)\)
\(A=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1}{3}\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)
...
Lời giải:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(a^3+a^3+1\geq 3\sqrt[3]{a^6}=3a^2\)
\(b^3+b^3+1\geq 3\sqrt[3]{b^6}=3b^2\)
\(c^3+c^3+1\geq 3\sqrt[3]{c^6}=3c^2\)
Cộng theo vế các BĐT vừa thu được ta có:
\(2(a^3+b^3+c^3)+3\geq 3(a^2+b^2+c^2)\)
\(\Leftrightarrow 2A+3\geq 9\)
\(\Leftrightarrow A\geq 3\)
Vậy \(A_{\min}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
Áp dụng bất đẳng thức bu nhi a, ta có
\(\left(a^3+b^3+c^3\right)\left(a+b+c\right)\ge\left(a^2+b^2+c^2\right)^2\ge\frac{1}{9}\left(a+b+c\right)^4\)
=>\(\frac{a^3+b^3+c^3}{a+b+c}\ge\frac{1}{9}\left(a+b+c\right)^2\)
theo giả thiết,m ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow3\ge\frac{9}{a+b+c}\Rightarrow a+b+c\ge3\)
=>\(\frac{a^3+b^3+c^3}{a+b+c}\ge1\)
dấu bẳng xảy ra <=>a=b=c=1
nhok cho chị mượn chõ chút
Bạn tự vẽ hình nhé!
Kẻ LH vuông góc với AB tại H
dễ dàng có \(\Delta KHL=\Delta MAK\left(ch-gn\right)\)
=>AK=HL
đặt AB=a,AK=x =>AK=HL=BH=x => HK=\(a-2x\)
ta có \(S_{ABC}=\frac{a^2}{2}\) ;\(S_{KML}=\frac{KL^2}{2}=\frac{HK^2+BH^2}{2}=\frac{\left(a-2x\right)^2+x^2}{2}\)
đến đây là tìm min của pt bậc 2 là sẽ ra