Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
By Cauchy-Schwarz, we have:
\(VT\ge\frac{\left(a^3+b^3+c^3\right)^2}{2\left(a^3+b^3+c^3\right)+a^2b+b^2c+c^2a}\)
We will prove: \(a^2b+b^2c+c^2a\le a^3+b^3+c^3\)
\(\Leftrightarrow a^2b+b^2c+c^2a+3abc\le a^3+b^3+c^3+3abc\)
By Schur, we have: \(RHS\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a\right)\)
So we're only need to prove: \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a+3abc\)
\(\Leftrightarrow ab^2+bc^2+ca^2\ge3abc\)
It is true by AM-GM ineq', so we have Q.E.D.
P/s: Em thử giải bài này bằng tiếng Anh (để tự luyện kĩ năng tiếng anh, tí em giải lại theo tiếng việt)
b) Ta có:
\(\frac{a}{\sqrt{b^2+3}}+\frac{a}{\sqrt{b^2+3}}+\frac{b^2+3}{8}+\frac{a^2}{2}\)\(\ge\)\(4\sqrt[4]{\frac{a^4}{16}}=2a\)
\(\frac{b}{\sqrt{c^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c^2+3}{8}+\frac{b^2}{2}\ge4\sqrt[4]{\frac{b^4}{16}}=2b\)
\(\frac{c}{\sqrt{a^2+3}}+\frac{c}{\sqrt{a^2+3}}+\frac{a^2+3}{8}+\frac{c^2}{2}\ge4\sqrt[4]{\frac{c^4}{16}}=2c\)
Cộng lại ta đươc:
\(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)+\)\(\frac{5\left(a^2+b^2+c^2\right)+9}{8}\)\(\ge2\left(a+b+c\right)\)
⇒ \(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)\ge\)\(6-\frac{5\left(a^2+b^2+c^2\right)+9}{8}\)(1)
Lại có: \(a^2+1\ge2a\); \(b^2+1\ge2b\); \(c^2+1\ge2c\)
Suy ra \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3=3\)
Khi đó (1)⇔ \(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)\ge\)\(6-\frac{5.3+9}{8}=3\)
⇒ \(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)
Dấu "=" xảy ra ⇔ \(a=b=c=1\)
\(\left(a^2+3b^2\right)\left(1+3\right)\ge\left(a+3b\right)^2\Rightarrow\sqrt{a^2+3b^2}\ge\frac{a+3b}{2}\)
\(\Rightarrow P=\sum\frac{ab}{\sqrt{a^2+3b^2}}\le2\sum\frac{ab}{a+3b}=2\sum\frac{ab}{a+b+b+b}\)
\(\Rightarrow P\le\frac{1}{8}\sum ab\left(\frac{1}{a}+\frac{3}{b}\right)=\frac{1}{8}\sum\left(3a+b\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)
"=" \(\Leftrightarrow a=b=c=1\)
Đầu tiên ta nhắc lại một kết quả sau: Với mọi số dương \(x,y\) thì \(\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}.\) Thực vậy bất đẳng thức tương đương với \(3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\Leftrightarrow2\left(x^2+y^2\right)-4xy\ge0\Leftrightarrow2\left(x-y\right)^2\ge0.\) (Đúng).
Đặt vế trái của bất đẳng thức là \(S\) và đặt \(T=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}.\) Áp dụng hằng đẳng thức \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right),\) ta được
\(S-T=\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ca+a^2}=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\).
Suy ra \(S=T.\) Ta có
\(2S=S+T=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
\(=\left(a+b\right)\frac{a^2-ab+b^2}{a^2+ab+b^2}+\left(b+c\right)\frac{b^2-bc+c^2}{b^2+bc+c^2}+\left(c+a\right)\frac{c^2-ca+a^2}{c^2+ca+a^2}\)
\(\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}.\)
Do đó \(2S\ge\frac{2\left(a+b+c\right)}{3}\to S\ge\frac{a+b+c}{3}.\)
Cho mk hỏi tại sao lại phải đặt thêm biểu thức T vậy ???
Mk vẫn ko hiểu cho lắm !!!
Một số đánh giá: \(a^2+ab+b^2=\frac{3}{4}\left(a+b\right)^2+\frac{1}{4}\left(a-b\right)^2\ge\frac{3}{4}\left(a+b\right)^2\)
\(ab=\frac{\left(a+b\right)^2}{4}-\frac{\left(a-b\right)^2}{4}\le\frac{\left(a+b\right)^2}{4}\)
\(\frac{a^3}{a^2+ab+b^2}=\frac{a\left(a^2+ab+b^2\right)-a\left(ab+b^2\right)}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\)
\(\ge a-\frac{\frac{\left(a+b\right)^2}{4}.\left(a+b\right)}{\frac{3}{4}\left(a+b\right)^2}=a-\frac{a+b}{3}=\frac{2a-b}{2}\)
Tương tự và suy ra đpcm.
5/ Tưỡng dễ ăn = sos + bđt phụ ai ngờ....hic...
\(BĐT\Leftrightarrow\Sigma_{cyc}\left(\frac{a^2+b^2+c^2}{a+b+c}-\frac{a^2+b^2}{a+b}\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\left(\frac{\left(a^2+b^2+c^2\right)\left(a+b\right)-\left(a^2+b^2\right)\left(a+b+c\right)}{\left(a+b+c\right)\left(a+b\right)}\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{ca\left(c-a\right)-bc\left(b-c\right)}{\left(a+b+c\right)\left(a+b\right)}\ge0\)\(\Leftrightarrow\Sigma_{cyc}\left(\frac{ca\left(c-a\right)}{\left(a+b+c\right)\left(a+b\right)}-\frac{ca\left(c-a\right)}{\left(a+b+c\right)\left(b+c\right)}\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{ca\left(c-a\right)^2}{\left(a+b+c\right)}\ge0\left(\text{đúng}\right)\)
Ai ngờ nổi khi không dùng BĐT phụ lại dễ hơn cái kia chứ -_-
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Bài 1. Từ giả thiết suy ra 1-a = b+c và áp dụng \(\left(x+y\right)^2\ge4xy\)
Ta có : \(4\left(1-a\right)\left(1-b\right)\left(1-c\right)=4\left(b+c\right)\left(1-c\right)\left(1-b\right)\le\left[\left(b+c\right)+\left(1-c\right)\right]^2\left(1-b\right)\)
\(=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)=-b^2\left(b+1\right)+\left(b+1\right)\le b+1=a+2b+c\)
a/ Biến đổi tương đương:
\(\Leftrightarrow3a^2-3ab+3b^2\ge a^2+ab+b^2\)
\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow2\left(a-b\right)^2\ge0\) (luôn đúng)
b/ \(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\frac{a+b}{3}=\frac{2a}{3}-\frac{b}{3}\)
Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)
Cộng vế với vế ta có đpcm
theo cô si có \(ab\le\frac{a^2+b^2}{2}\Rightarrow a^2+ab+b^2\le a^2+\frac{a^2+b^2}{2}+b^2\)
\(\Rightarrow\frac{a^5}{a^2+ab+b^2}\ge\frac{a^5}{\frac{3}{2}\left(a^2+b^2\right)}=\frac{2}{3}\cdot\frac{a^5}{a^2+b^2}\)
tương tự cm đc \(\frac{b^5}{b^2+bc+c^2}\ge\frac{2}{3}\cdot\frac{b^5}{b^2+c^2}\) và \(\frac{c^5}{c^2+ac+a^2}\ge\frac{2}{3}\cdot\frac{c^5}{c^2+a^2}\)
\(\Rightarrow VT\ge\frac{2}{3}\left(\frac{a^5}{a^2+b^2}+\frac{b^5}{b^2+c^2}+\frac{c^5}{c^2+a^2}\right)\)
\(\Rightarrow VT\ge\frac{2}{3}\left(\frac{a^3\left(a^2+b^2\right)-a^3b^2}{a^2+b^2}+\frac{b^3\left(b^2+c^2\right)-b^3c^2}{b^2+c^2}+\frac{c^3\left(c^2+a^2\right)-c^3a^2}{c^2+a^2}\right)\)
áp dụng cô si ta có \(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}\Rightarrow\hept{\begin{cases}\frac{-a^3b^2}{a^2+b^2}\ge\frac{a^2b}{2}\\\frac{-b^3c^2}{b^2+c^2}\ge\frac{b^2c}{2}\\\frac{-c^3a^2}{c^2+a^2}\ge\frac{c^2a}{2}\end{cases}}}\)
\(\Rightarrow VT\ge\frac{2}{3}\left(a^3+\frac{a^2b}{2}+b^3+\frac{b^2c}{2}+c^3+\frac{c^2a}{2}\right)\)
hjhj khó quá :v
ủa hình như chưa làm đc đúng k