Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(5a^2+2ab+2b^2=4a^2+2ab+b^2+\left(a^2+b^2\right)\ge4a^2+2ab+b^2+2ab=\left(2a+b\right)^2\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Lại có: \(\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)
Tương tự cộng lại ta có: \(VT\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Theo BĐT Bunhiacopxki ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{3}\)
\(\Rightarrow VT\le\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}\)
Dấu = xảy ra khi \(a=b=c=\sqrt{3}\)
bài này sai đề vì ta làm dấu bằng xảy ra khi a=b=c=\(\frac{1}{3}\).sau đó thay vào biểu thức cần cm thì sẽ thấy vô lí
\(\sqrt{a^2+3a+5}\ge\frac{5a+13}{6}\Leftrightarrow a^2+3a+5\ge\frac{25a^2+130a+169}{36}\)
\(\Leftrightarrow36a^2+108a+180\ge25a^2+130a+169\Leftrightarrow11a^2-22a+11\ge0\)
\(\Leftrightarrow11\left(a-1\right)^2\ge0\forall a\inℝ\)
Dấu = xảy ra khi a=1
Ta có:
\(\sqrt{a^2+3ab+5b^2}=\sqrt{\left(\frac{25a^2}{36}+\frac{130ab}{36}+\frac{169}{36}\right)+\frac{11}{36}\left(a^2-2ab+b^2\right)}\)
\(=\sqrt{\left(\frac{5a}{6}+\frac{13b}{6}\right)^2+\frac{11}{36}\left(a-b\right)^2}\ge\frac{5a+13b}{6}\)
Tương tự:\(\sqrt{b^2+3bc+5c^2}\ge\frac{5b+13c}{6};\sqrt{c^2+3ca+5a^2}\ge\frac{5c+13a}{6}\)
Khi đó:\(P=\sqrt{a^2+3ab+5b^2}+\sqrt{b^2+3bc+5c^2}+\sqrt{c^2+3ac+5a^2}\)
\(\ge\frac{5a+13b+5b+13c+5c+13a}{6}=\frac{18\left(a+b+c\right)}{6}=3\left(a+b+c\right)=9\)
Dấu "=" xảy ra tại \(a=b=c=1\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow a+b+c\ge3\)
Và
\(VT^2=\left(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\right)^2\)
\(\le\left(5a+4+5b+4+5c+4\right)\left(1+1+1\right)\)
\(\Leftrightarrow VT^2\le15\left(a+b+c\right)+36\)
Mà \(3\le a+b+c\left(cmt\right)\)
\(\Rightarrow VT^2\le15\left(a+b+c\right)+12\left(a+b+c\right)=27\left(a+b+c\right)\)
\(\Rightarrow VT\le3\sqrt{3\left(a+b+c\right)}\)
Ta có đpcm
Dấu " = " xảy ra khi \(a=b=c=1\)
\(P^2=a+b+c+a^2+b^2+c^2+2\sqrt{\left(a+b^2\right)\left(b+c^2\right)}+2\sqrt{\left(b+c^2\right)\left(c+a^2\right)}+2\sqrt{\left(a+b^2\right)\left(c+a^2\right)}.\)
Theo bđt Bunhiacopski ta có
\(2\sqrt{\left(a+b^2\right)\left(b+c^2\right)}\ge2\sqrt{b^3}\)(vì \(a,c\ge0\))
Tương tự \(2\sqrt{\left(b+c^2\right)\left(c+a^2\right)}\ge2\sqrt{c^3}\)
\(2\sqrt{\left(c+a^2\right)\left(a+b^2\right)}\ge2\sqrt{a^3}\)
\(\Rightarrow P^2\ge a+b+c+a^2+b^2+c^2+2\sqrt{a^3}+2\sqrt{b^3}+2\sqrt{c^3}\)
Theo gt : \(\hept{\begin{cases}a,b,c\ge0\\a^2+b^2+c^2=1\end{cases}\Rightarrow0\le a,b,c\le1}\)
\(\Rightarrow\hept{\begin{cases}a\ge a^2,b\ge b^2,c\ge c^2\\a^3\ge a^4,b^3\ge b^4,c^3\ge c^4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b+c\ge a^2+b^2+c^2=1\\2\sqrt{a^3}+2\sqrt{b^3}+2\sqrt{c^3}\ge2\left(a^2+b^2+c^2\right)=2\end{cases}}\)
\(\Rightarrow P^2\ge1+1+2=4\)\(\Rightarrow P\ge2\)
Dấu "=" xảy ra khi a=b=0,c=1 và các hoán vị của nó
Tìm Max
Theo bđt Bunhiacopski ta có
\(P^2\le\left(1+1+1\right)\left(a+b+c+a^2+b^2+c^2\right)\)
\(=3\left(a+b+c+a^2+b^2+c^2\right)\)\(\le3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+a^2+b^2+c^2\right)\)
\(=3\left(1+\sqrt{3}\right)\)
\(\Rightarrow P\le\sqrt{3\left(1+\sqrt{3}\right)}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
1/ \(a+1=\sqrt[4]{\frac{\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}-1\right)^2}}-\sqrt[4]{\frac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}+1\right)^2}}=\sqrt{\frac{\sqrt{3}+1}{\sqrt{3}-1}}-\sqrt{\frac{\sqrt{3}-1}{\sqrt{3}+1}}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}}=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
2/ \(a+b=5\Leftrightarrow\left(a+b\right)^3=125\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=125\)
\(\Rightarrow a^3+b^3=125-3ab\left(a+b\right)=125-3.1.5=110\)
3/ \(mn\left(mn+1\right)^2-\left(m+n\right)^2.mn\)
\(=mn\left(\left(mn+1\right)^2-\left(m+n\right)^2\right)\)
\(=mn\left(mn+1-m-n\right)\left(mn+1+m+n\right)\)
\(=mn\left(m-1\right)\left(n-1\right)\left(m+1\right)\left(n+1\right)\)
\(=\left(m-1\right)m\left(m+1\right)\left(n-1\right)n\left(n+1\right)\)
Do \(\left(m-1\right)m\left(m+1\right)\) và \(\left(n-1\right)n\left(n+1\right)\) đều là tích của 3 số nguyên liên tiếp nên chúng đều chia hết cho 3 \(\Rightarrow\) tích của chúng chia hết cho 36
4/
Do \(0\le x\le1\Rightarrow\left\{{}\begin{matrix}x\ge0\\x-1\le0\end{matrix}\right.\) \(\Rightarrow x\left(x-1\right)\le0\)
\(\Leftrightarrow x^2-x\le0\Leftrightarrow x^2\le x\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
5/ Đặt \(\left\{{}\begin{matrix}\sqrt{5a+4}=x\\\sqrt{5b+4}=y\\\sqrt{5c+4}=z\end{matrix}\right.\)
Do \(a+b+c=1\Rightarrow0\le a;b;c\le1\)
\(\Rightarrow2\le x;y;z\le3\) và \(x^2+y^2+z^2=5\left(a+b+c\right)+12=17\)
Khi đó ta có:
Do \(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\)
\(\Leftrightarrow x^2-5x+6\le0\Leftrightarrow x\ge\frac{x^2+6}{5}\)
Tương tự: \(y\ge\frac{y^2+6}{5}\) ; \(z\ge\frac{z^2+6}{5}\)
Cộng vế với vế:
\(A=x+y+z\ge\frac{x^2+y^2+z^2+18}{5}=\frac{17+18}{5}=7\)
\(\Rightarrow A_{min}=7\) khi \(\left(x;y;z\right)=\left(2;2;3\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
Đặt \(\left(\sqrt{5a+4};\sqrt{5b+4};\sqrt{5c+4}\right)=\left(x;y;z\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2=17\\2\le x;y;z\le3\end{matrix}\right.\)
\(P=x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=\sqrt{51}\)
\(P_{max}=\sqrt{51}\) khi \(a=b=c=\frac{1}{3}\)
\(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\Rightarrow x\ge\frac{x^2+6}{5}\)
Tương tự: \(y\ge\frac{y^2+6}{5}\) ; \(z\ge\frac{z^2+6}{5}\)
Cộng vế với vế: \(P\ge\frac{x^2+y^2+z^2+18}{5}=7\)
\(P_{min}=7\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị