\(\sqrt{ab}\)+\(\sqrt{bc}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

Cái này easy mà: Nhân 2 với cả 2 vế rồi biến đổi thành: \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)\(\ge\)0 (luôn đúng)

9 tháng 9 2018

theo bất đẳng thức cauchy ta có

\(a+b\ge2\sqrt{ab}\)

\(a+c\ge2\sqrt{ac}\)

\(b+c\ge2\sqrt{bc}\)

cộng 3 vế lại

a+b+c+a+b+c=\(2\sqrt{ac}+2\sqrt{bc}+2\sqrt{ab}\)

2(a+b+c)=2(\(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\))

a+b+c=\(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)(ĐFCM)

chúc bn hok tốt

22 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)

Tượng tự tao có \(\hept{\begin{cases}\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}}\\\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ca}}\end{cases}}\)

\(\Rightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c\)

3 tháng 2 2021

Ta có: \(\left(a^4-a^3+2\right)-\left(a+1\right)=\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)\(\Rightarrow a^4-a^3+2\ge a+1\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\)

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\)

Tương tự:\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\)\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+c+1}}\)

\(\Rightarrow VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\)\(\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{abc+ac+c}+\frac{ac}{abc^2+abc+ac}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{ac+c+1}+\frac{ac}{ac+c+1}+\frac{1}{ca+c+1}\right)}=\sqrt{3}\)(abc = 1)

Đẳng thức xảy ra khi a = b = c = 1

17 tháng 8 2017

a)Áp dụng BĐT AM-GM ta có

\(\frac{ab\sqrt{ab}}{a+b}\le\frac{ab\sqrt{ab}}{2\sqrt{ab}}=\frac{ab}{2}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\frac{bc\sqrt{bc}}{b+c}\le\frac{bc}{2};\frac{ac\sqrt{ac}}{a+c}\le\frac{ac}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT=Σ\frac{ab\sqrt{ab}}{a+b}\le\frac{ab+bc+ca}{2}=VP\)

Khi \(a=b=c\)

b)Áp dụng tiếp AM-GM:

\(b\sqrt{a-1}\le\frac{b\left(a-1+1\right)}{2}=\frac{ab}{2}\)

\(a\sqrt{b-1}\le\frac{a\left(b-1+1\right)}{2}=\frac{ab}{2}\)

Cộng theo vế 2 BĐT trên ta có:

\(VT=b\sqrt{a-1}+a\sqrt{b-1}\le ab=VP\)

Khi \(a=b=1\)

6 tháng 12 2019

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì x, y, z > 0; x + y + z  = 1. Quy về: \(\sqrt{\frac{1}{x}+\frac{1}{yz}}+\sqrt{\frac{1}{y}+\frac{1}{zx}}+\sqrt{\frac{1}{z}+\frac{1}{xy}}\ge\sqrt{\frac{1}{xyz}}+\sqrt{\frac{1}{x}}+\sqrt{\frac{1}{y}}+\sqrt{\frac{1}{z}}\)

\(\Leftrightarrow\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\frac{x}{\sqrt{x+yz}+\sqrt{yz}}+\frac{y}{\sqrt{y+zx}+\sqrt{zx}}+\frac{z}{\sqrt{z+xy}+\sqrt{xy}}\ge1\) (chuyển vế qua nhóm lại rồi liên hợp)

\(\Leftrightarrow\Sigma_{cyc}\frac{x}{\sqrt{x\left(x+y+z\right)+yz}+\sqrt{yz}}\ge1\Leftrightarrow\Sigma_{cyc}\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{yz}}\ge1\)

BĐT này đúng! Thật vậy:

\(VT\ge\Sigma_{cyc}\frac{x}{\frac{\left(x+y\right)+\left(z+z\right)}{2}+\frac{\left(y+z\right)}{2}}=\Sigma_{cyc}\frac{x}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Ta có đpcm. Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\Leftrightarrow a=b=c=3\)

15 tháng 6 2020

2. Bạn kiểm tra lại đề: VP = 1/2

Ta có: 

  \(\sqrt{a\left(3a+b\right)}=\frac{1}{4}.2.\sqrt{4a\left(3a+b\right)}\le\frac{1}{4}\left(4a+3a+b\right)=\frac{1}{4}\left(7a+b\right)\)

\(\sqrt{b\left(3b+a\right)}=\frac{1}{4}.2.\sqrt{4b\left(3b+a\right)}\le\frac{1}{4}\left(4b+3b+a\right)=\frac{1}{4}\left(7b+a\right)\)

=> \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{\frac{1}{4}\left(7a+b\right)+\frac{1}{4}\left(7b+a\right)}=\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

Vậy: \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\) với a, b dương

23 tháng 11 2019

Áp dụng BĐT Cauchy-Schwarz :

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)(1)

Áp dụng BĐT quen thuộc \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) :

\(\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\)(2)

Từ (1) và (2) ta có đpcm.

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2}{3}\)