Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a và b không âm nên
\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left(a+b+\frac{1}{2}\right)\)(bất đẳng thức cô - si)
Cần chứng minh \(\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\). Xét hiệu hai vế
\(\sqrt{ab}\left(a+b+\frac{1}{2}\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\sqrt{ab}\left(a+b+\frac{1}{2}-\sqrt{a}-\sqrt{b}\right)\)
\(=\sqrt{ab}\left[\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\right]\ge0\)
Xảy ra đẳng thức \(\Leftrightarrow a=b=\frac{1}{4}\)hoặc\(a=b=0\)
Bạn theo đường link này là ra
https://olm.vn/hoi-dap/question/1043868.html
P/s hok tốt
3a) ta có \(\frac{a^2}{a+b}=a-\frac{ab}{a+b}>=a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)
vì \(a,b>0,a+b>=2\sqrt{ab}nên\frac{ab}{a+b}< =\frac{ab}{2\sqrt{ab}}\)
tương tự \(\frac{b^2}{b+c}=b-\frac{bc}{b+c}>=b-\frac{bc}{2\sqrt{bc}}=b-\frac{\sqrt{bc}}{2}\)
tương tự \(\frac{c^2}{c+a}=c-\frac{ca}{c+a}>=c-\frac{ca}{2\sqrt{ca}}=c-\frac{\sqrt{ca}}{2}\)
cộng từng vế BĐT ta được \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ca}}{2}=\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}\left(1\right)\)
giả sử \(\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}>=\frac{a+b+c}{2}\)
<=> \(2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=a+b+c\)
<=> \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=0\)
<=> \(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}>=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)
(đúng với mọi a,b,c >0) (2)
(1),(2)=> \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=\frac{a+b+c}{2}\left(đpcm\right)\)
a) bđt cosi
b) \(\left(\sqrt{a+b}\right)=a+b\)
\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)
\(a+b+2\sqrt{ab}>a+b\)
=> đpcm
c) xét hiệu \(a-\sqrt{a}+\frac{1}{4}+b-\sqrt{b}+\frac{1}{4}\ge0\)
d)https://olm.vn/hoi-dap/question/1003405.html
nè ngại làm
đặt \(S=\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\)
\(=\frac{a^3}{4a^2b^2+a^2}+\frac{b^3}{4b^2c^2+b^2}+\frac{c^3}{4a^2c^2+c^2}\ge\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4a^2b^2+4b^2c^2+4c^2a^2+a^2+b^2+c^2}\)
xét hiệu:
1-4(a2b2+b2c2+c2a2)-a2-b2-c2
=2ab+2bc+2ca-4(a2b2+b2c2+c2a2)
=2ab(1-2ab)+2bc(1-2bc)+2ca(1-2ca)
ta có:
\(2ab\le\frac{\left(a+b\right)^2}{2}\le\frac{1}{2};2bc\le\frac{\left(b+c\right)^2}{2}\le\frac{1}{2};2ca\le\frac{\left(c+a\right)^2}{2}\le\frac{1}{2}\)
\(\Rightarrow2ab\left(1-2ab\right);2bc\left(1-2bc\right);2ca\left(1-2ca\right)\ge0\)
\(\Rightarrow1\ge4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2\)
\(\Rightarrow\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)
\(\Rightarrow\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)
=>đpcm
dấu"=" xảy ra khi 1 số=1;2 số còn lại =0
ĐK a,b không âm
Ta có
\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\)
\(=\frac{a+b}{2}\left(a+\frac{1}{4}+b+\frac{1}{4}\right)\ge\sqrt{ab}\left(2\sqrt{a\cdot\frac{1}{4}}+2\sqrt{b\cdot\frac{1}{4}}\right)\)
\(=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)=a\sqrt{b}+b\sqrt{a}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{4}\)
a/ \(a^2+b^2+1\ge ab+a+b\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Vậy BĐT dc chứng minh
b/ Xét vế trái : \(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{\left(a+b\right)}{2}\left(a+\frac{1}{4}+b+\frac{1}{4}\right)\)
Áp dụng bđt Cauchy ta có \(\frac{a+b}{2}\ge\sqrt{ab}\); \(a+\frac{1}{4}\ge\sqrt{a}\); \(b+\frac{1}{4}\ge\sqrt{b}\)
Từ đó nhân các vế lại suy ra đpcm
#: Lỡ hẹn với Mincopxki rồi xài cách khác vậy :(
Đặt \(a=\frac{2x}{3};b=\frac{2y}{3};c=\frac{2z}{3}\)
Khi đó ta có \(xy+yz+xz\ge3\) và cần chứng minh
\(Σ_{cyc}\sqrt{\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}}\ge\frac{\sqrt{181}}{5}\)
Áp dụng BĐT Cauchy-Schwarz ta có:\(Σ_{cyc}\sqrt{\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}}\)
\(=\frac{15}{\sqrt{181}}Σ_{cyc}\sqrt{\left(\frac{4}{9}+\frac{9}{25}\right)\left(\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}\right)}\ge\frac{15}{\sqrt{181}}Σ_{cyc}\left(\frac{4x}{9}+\frac{9}{5\left(2y+3\right)}\right)\)
Giờ chỉ cần chứng minh \(\frac{15}{\sqrt{181}}Σ_{cyc}\left(\frac{4x}{9}+\frac{9}{5\left(2y+3\right)}\right)\ge\frac{\sqrt{181}}{5}\)
\(\Leftrightarrow20\left(x+y+z\right)+81\left(\frac{1}{2x+3}+\frac{1}{2y+3}+\frac{1}{2z+3}\right)\ge\frac{543}{5}\)
Đặt tiếp \(x+y+z=3u;xy+yz+xz=3v^2\left(v>0\right)\)
Vì thế \(u\ge v\ge1\)và áp dụng BĐT C-S dạng Engel ta có:
\(20\left(x+y+z\right)+81\left(\frac{1}{2x+3}+\frac{1}{2y+3}+\frac{1}{2z+3}\right)-\frac{543}{5}\)
\(\ge20\left(x+y+z\right)+81\cdot\frac{\left(1+1+1\right)^2}{Σ_{cyc}\left(2x+3\right)}-\frac{543}{5}=60u+\frac{729}{6u+9}-\frac{543}{5}\)
\(=3\left(20u+\frac{81}{2u+3}-\frac{181}{5}\right)=\frac{6\left(u-1\right)\left(100u+69\right)}{5\left(2u+3\right)}\ge0\)
Điều này đúng tức là ta có ĐPCM
\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\)
Áp dụng BĐT cô si
=> \(\frac{a+b}{2}\ge\sqrt{ab}\)
=> \(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}\ge\sqrt{ab}\left(a+b+\frac{1}{2}\right)\) (1)
CM \(\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge\) \(a\sqrt{b}+b\sqrt{a}\)
XH : \(\sqrt{ab}\left(a+b+\frac{1}{2}\right)-a\sqrt{b}-b\sqrt{a}\)
= \(\sqrt{ab}\left(a+b+\frac{1}{2}-\sqrt{a}-\sqrt{b}\right)=\sqrt{ab}\left(a-\sqrt{a}+\frac{1}{4}+b-\sqrt{b}+\frac{1}{4}\right)\)
= \(\sqrt{ab}\left[\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\right]\ge0\) Với mọi a ; b > 0
Tự Cm tiếp nha