Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a \(\dfrac{1}{x-y}+\dfrac{2}{x+y}+\dfrac{3x}{y^2-x^2}\)
\(=\dfrac{x+y+2x-2y-3x}{\left(x-y\right)\left(x+y\right)}=\dfrac{-y}{\left(x-y\right)\left(x+y\right)}\)
b: \(\dfrac{1}{x-2}+\dfrac{1}{x+2}-\dfrac{4x-4}{x^2-4}\)
\(=\dfrac{x+2+x-2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{-2x+4}{\left(x-2\right)\left(x+2\right)}\)
=-2/x+2
c: \(\dfrac{x+1}{x+3}-\dfrac{x-1}{3-x}+\dfrac{2x-2x^2}{x^2-9}\)
\(=\dfrac{\left(x+1\right)\left(x-3\right)+\left(x-1\right)\left(x+3\right)+2x-2x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{x^2-2x-3+x^2+2x-3+2x-2x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{2x-6}{\left(x+3\right)\left(x-3\right)}=\dfrac{2}{x+3}\)
ĐKXD: x ≠ {2, 3, 4, 5}
Phương trình
Vậy nghiệm của phương trình là x = - 1;x = 7/2
Chọn đáp án C.
x^8+x^7+1
=x^8+x^7+x^6-x^6+1
=x^6(x^2+x+1)-(x^3-1)(x^3+1)
=x^6(x^2+x+1)-(x^3+1)(x-1)(x^2+x+1)
=(x^2+x+1)[x^6-(x^3+1)(x-1)]
=(x^2+x+1)(x^6-x^4+x^3-x+1]
b: x^8+x^4+1
=x^8+2x^4+1-x^4
=(x^4+1)^2-x^4
=(x^4+x^2+1)(x^4-x^2+1)
=(x^4-x^2+1)(x^4+2x^2+1-x^2)
=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)
c: x^5+x+1
=x^5-x^2+x^2+x+1
=x^2(x^3-1)+(x^2+x+1)
=x^2(x-1)(x^2+x+1)+(x^2+x+1)
=(x^2+x+1)(x^3-x^2+1)
d: x^3+x^2+4
=x^3+2x^2-x^2+4
=x^2(x+2)-(x-2)(x+2)
=(x+2)(x^2-x+2)