\(0\le a\le b\le c\le1\)

Tìm giá trị lớn nhất của biểu thức

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2019

a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)

Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)

b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)

Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)

\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)

\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)

\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)

\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)

Cộng các vế lại, ta được :

\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)

\(\Rightarrow B\le6\)

Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)

28 tháng 11 2019

Xét 

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow\left(1-b-a+ab\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)

\(\Leftrightarrow a+b+c-ab-bc-ca+abc\le1\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1\)

Dấu "=" xảy ra tại \(a=b=0;c=1\) và các hoán vị.

28 tháng 11 2019

o lờ mờ dấu "=" xảy ra khi a=b=0;c=1 và các hoán vị hoặc a=b=1;c=0 và các hoán vị 

\(A=a\left(1-b\right)+b\left(1-c\right)+c\left(1-a\right)\ge0\)

Dấu "=" xảy ra khi a=b=c=0 hoặc a=b=c=1 

1 tháng 6 2017

Sau 3 tháng cuối cùng cũng thanh toán được :|

Điểm rơi \(a=0;b=\dfrac{12}{23};c=\dfrac{18}{23}\)

Áp dụng BĐT AM-GM ta có:

\(b^2\left(c-b\right)=\dfrac{1}{2}\cdot b\cdot b\left(2c-2b\right)\le\dfrac{1}{2}\left(\dfrac{b+b-2c-2b}{3}\right)^3=\dfrac{4c^3}{27}\)

\(a^2\left(b-c\right)\le0\)

\(Q \le \frac{4c^3}{27}+c^2(1-c)=c^2-\frac{23}{27}.c^3=c^2(1-\frac{23}{27}.c)\)

\(=\frac{54^2}{23^2}.c^2.(1-\frac{23}{27}.c) \le \frac{1}{3^3}.\frac{54^2}{23^2}=\frac{108}{529}\)

22 tháng 3 2017

đề đúng ko vậy

2 tháng 11 2018

\(DPCM\Leftrightarrow P=a^2\left(b-c\right)+b^2\left(c-b\right)+c^2\left(1-c\right)\le\frac{108}{529}\)

Ta có: \(0\le a\le b\le c\le1\Rightarrow a^2\left(b-c\right)\le0\left(1\right)\)

\(b^2\left(c-b\right)=4.\frac{b}{2}.\frac{b}{2}.\left(c-b\right)\le4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4c^3}{27}\)

\(\Rightarrow P\le\frac{4c^3}{27}+c^2\left(1-c\right)=c^2\left(1-\frac{23c}{27}\right)=\frac{23c}{54}.\frac{23c}{54}\left(1-\frac{23c}{27}\right).\frac{54^2}{23^2}\)

2 tháng 11 2018

Tiếp

\(\le\left(\frac{\frac{23c}{54}+\frac{23c}{54}+1-\frac{23c}{27}}{3}\right)^3.\frac{54^2}{23^2}=\frac{1}{27}.\frac{54^2}{23^2}=\frac{108}{529}\)

Dấu bằng xảy ra\(\Leftrightarrow\hept{\begin{cases}a^2\left(b-c\right)=0\\\frac{b}{2}=c-b\\\frac{23c}{54}=1-\frac{23c}{27}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=\frac{2}{3}c\\c=\frac{18}{23}\end{cases}}\)

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)