K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:
Đặt $\sqrt{2x}=a; \sqrt{2y}=b$ thì $0\leq a,b\leq 1$

Bài toán trở thành:
CMR:

$\frac{a}{b^2+2}+\frac{b}{a^2+2}\leq \frac{2}{3}$
$\Leftrightarrow 3(a^3+b^3)+6(a+b)\leq 2a^2b^2+4(a^2+b^2)+8(I)$

--------------------------

Thật vậy:

$a^3+b^3=(a+b)(a^2-ab+b^2)\leq 2(a^2-ab+b^2)$

$\Rightarrow 3(a^3+b^3)\leq 6(a^2-ab+b^2)(1)$

$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

$\Rightarrow 6(a+b)\leq 6(ab+1)(2)$

Từ $(1);(2)\Rightarrow 3(a^3+b^3)+6(a+b)\leq 6(a^2+b^2+1)(*)$

Mà:

$6(a^2+b^2+1)-[2a^2b^2+4(a^2+b^2)+8]$

$=2(a^2+b^2-a^2b^2-1)=2(a^2-1)(1-b^2)\leq 0$

$\Rightarrow 6(a^2+b^2+1)\leq 2a^2b^2+4(a^2+b^2)+8(**)$

Từ $(*);(**)$ suy ra $(I)$ đúng. Ta có đpcm.

Dấu "=" xảy ra khi $a=b=1$

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/voi-0-xy-dfrac12-chung-minhdfracsqrtxy1dfracsqrtyx1-dfrac2sqrt23.461470553384

20 tháng 5 2017

Bổ sung giả thuyết x ,y \(\ge0\)

Do giả thiết x ,y \(\ge0\)

\(\sqrt{x}+\sqrt{y}\) =1
nên:
xy (x+y )\(^2\)\(\le\) \(\dfrac{1}{64}\)
<=> 64 xy (x + y )\(^2\) \(\le\)1
<=> 64 xy ( x + y)\(^2\)\(\le\)(\(\sqrt{x}+\sqrt{y}\))\(^8\)
<=> 64 xy ( x + y )\(^2\) < \((x+2\sqrt{xy}+y)^4\)
Áp dụng bất đẳng thức Cauchy cho 2 số không âm x + y và \(2\sqrt{xy}\)
ta có ;
x + y + 2\(\sqrt{xy}\) \(\ge\) \(2\sqrt{x+y}2\sqrt{xy}\)
=> ( x + y +2\(\sqrt{xy}\)) \(^4\)\(\ge\) (\(2\sqrt{x+y}2\sqrt{xy}\) )\(^4\)= 64 xy (x + y)\(^2\)
=> ĐIỀU PHẢI CHỨNG MINH
Dấu bằng xảy ra <=> x + y = \(2\sqrt{xy}\)
<=> x = y = \(\dfrac{1}{4}\)

20 tháng 5 2017

Bạn đg viết cái gì vậy ?

20 tháng 5 2017

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y}=b\end{matrix}\right.\), ta có:

\(A=\left[\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\times\dfrac{2}{a+b}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\)\(\times\dfrac{a^3+ab^2+a^2b+b^3}{ab^3+a^3b}\)

\(=\left(\dfrac{b+a}{ab}\times\dfrac{2}{a+b}+\dfrac{b^2+a^2}{a^2b^2}\right)\)\(\times\dfrac{a^2\left(a+b\right)+b^2\left(a+b\right)}{ab\left(a^2+b^2\right)}\)

\(=\dfrac{2ab+b^2+a^2}{a^2b^2}\times\dfrac{\left(a+b\right)\left(a^2+b^2\right)}{ab\left(b^2+a^2\right)}\)

\(=\dfrac{\left(a+b\right)^3}{a^3b^3}\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{\left(xy\right)^3}}\)

Ta có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )

Dấu "=" xảy ra khi \(a=b\)

Bài tập :

Có : \(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{x}+\dfrac{x+y}{y}=2+\dfrac{x}{y}+\dfrac{y}{x}\) ( do \(x+y=1\) )

Theo BĐT trên có : \(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)

Nên \(A\ge2+2=4\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

14 tháng 6 2017

\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)

\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)

\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)

Cộng theo vế 3 BĐT trên ta có:

\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)

23 tháng 1 2021

Ta có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) (tự cm)

Lại có : \(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}\)

Áp dụng BĐT trên ta có : : \(xy\le\left(\dfrac{x+y}{2}\right)^2\)

\(\Leftrightarrow A\ge\dfrac{x+y}{\left(\dfrac{x+y}{2}\right)^2}=\dfrac{1}{\dfrac{1}{2^2}}=4\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Vậy...

23 tháng 1 2021

undefined

23 tháng 1 2021

Có: A=\(\dfrac{1}{x}+\dfrac{1}{y}\) =\(\dfrac{x+y}{xy}\) =\(\dfrac{1}{xy}\) ( do x+y=1)

     Áp dụng bđt \(\dfrac{a+b}{2}\ge\sqrt{ab}\) ,dâú bằng xảy ra khi a=b, ta có:

A=\(\dfrac{1}{x}+\dfrac{1}{y}\) =\(\dfrac{1}{xy}\) ≥ \(\dfrac{2}{x+y}\) =\(\dfrac{2}{1}\) =2 ( x+y=1)

dấu bằng xảy ra khi x=y=0,5. 

c/m bđt \(\dfrac{a+b}{2}\ge\sqrt{ab}\) ⇔ a+b ≥ 2\(\sqrt{ab}\)

                                    ⇔(a+b)2 ≥ 4ab 

                                     ⇔a2 +b2 +2ab≥ 4ab

                                      ⇔(a-b)≥ 0 (luôn đúng)

   dấu bằng xảy ra khi a=b.

23 tháng 1 2021

\(\dfrac{a+b}{2}\ge\sqrt{ab}\left(\circledast\right)\\ \Leftrightarrow a+b\ge2\sqrt{ab}\\ \Leftrightarrow\left(a+b\right)^2\ge4ab\\ \Leftrightarrow a^2+2ab+b^2-4ab\ge0\\ \Leftrightarrow a^2-2ab+b^2=\left(a-b\right)^2\ge0\left(\text{luôn đúng}\right)\)

Vậy BĐT (*) được chứng minh.

\(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{1}{xy}\)

__________________________________

 \(\dfrac{x+y}{2}\ge\sqrt{xy}\\ \Rightarrow\sqrt{xy}\le\dfrac{1}{2}\\ \Rightarrow xy\le\dfrac{1}{4}\\ \Rightarrow A=\dfrac{1}{xy}\ge\dfrac{1}{\dfrac{1}{4}}=4\)

Vậy GTNN của A = 4

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)