K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

mấy bạn giải giúp mk vs

a: \(=x^2-10x+25+y^2+2y+1=\left(x-5\right)^2+\left(y+1\right)^2\)

b: \(=\left(x+y\right)^2-16\)

c: \(=a^2-2ac+c^2-\left(b^2-2bd+d^2\right)\)

\(=\left(a-c\right)^2-\left(b-d\right)^2\)

d: \(=\left(a-c\right)^2-b^2\)

f: \(=4a^2+4ab+b^2+b^2-2b+1\)

\(=\left(2a+b\right)^2+\left(b-1\right)^2\)

19 tháng 8 2018

Bài 1:

a) \(x^2-10x+26+y^2+2y\)

\(=x^2-2.x.5+25+y^2+2y+1\)

\(=\left(x-5\right)^2+\left(y+1\right)^2\)

b) Sửa đề \(z^2-6z+5-t^2-4t\)

\(=z^2-2.z.3+9-4-t^2-4t\)

\(=\left(z-3\right)^2-\left(t^2+4t+4\right)\)

\(=\left(z-3\right)^2-\left(t+2\right)^2\)

c) \(\left(x+y-4\right)\left(x+y+4\right)\)

\(=\left(x+y\right)^2-4^2\)

d) \(a^2-b^2+c^2-2ac-d^2+2bd\)

\(=\left(a^2-2ac+c^2\right)-\left(b^2-2bd+d^2\right)\)

\(=\left(a-c\right)^2-\left(b-d\right)^2\)

e) \(\left(a-b-c\right)\left(a+b-c\right)\)

\(=\left(a-c-b\right)\left(a-c+b\right)\)

\(=\left(a-c\right)^2-b^2\)

f) \(4a^2+2b^2-4ab-2b+1\)

\(=\left(2a\right)^2-2.2a.b+b^2+b^2-2b+1\)

\(=\left(2a-b\right)^2+\left(b-1\right)^2\)

Bài 2:

a) Sửa đề \(4x^2-4xy+y^2\)

\(=\left(2x\right)^2-2.2x.y+y^2\)

\(=\left(2x-y\right)^2\)

b) \(y^2-6y+9\)

\(=y^2-2.y.3+3^2\)

\(=\left(y-3\right)^2\)

c) \(a^2+a+\dfrac{1}{4}\)

\(=a^2+2a.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\)

\(=\left(a+\dfrac{1}{2}\right)^2\)

d) \(a^2-12a+36\)

\(=a^2-2.a.6+6^2\)

\(=\left(a-6\right)^2\)

i) \(x^2-xy+\dfrac{1}{4}y^2\)

\(=x^2-2.x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\)

\(=\left(x-\dfrac{1}{2}y\right)^2\)

e) \(9x^2-24x+16\)

\(=\left(3x\right)^2-2.3x.4+4^2\)

\(=\left(3x-4\right)^2\)

f) \(x^2-3x+\dfrac{9}{4}\)

\(=x^2-2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\)

\(=\left(x-\dfrac{3}{2}\right)^2\)

g) \(1-2xy^2+x^2y^4\)

\(=1-2xy^2+\left(xy^2\right)^2\)

\(=\left(1-xy^2\right)^2\)

h) \(\left(2a-b\right)^2+2\left(2a-b\right)+1\)

\(=\left(2a-b+1\right)^2\)

Bài 3:

a) \(A=\dfrac{1}{4}x^2-xy+y^2\)

\(A=\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.y+y^2\)

\(A=\left(\dfrac{1}{2}x-y\right)^2\)

Thay x = 2012 và y = 1004 vào A ta được

\(A=\left(\dfrac{1}{2}.2012-1004\right)^2\)

\(A=\left(1006-1004\right)^2\)

\(A=2^2=4\)

b) \(B=9x^2-3xy+\dfrac{1}{4}y^2\)

\(B=\left(3x\right)^2-2.3x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\)

\(B=\left(3x-\dfrac{1}{2}y\right)^2\)

Thay x = 231 và y = 1384 vào B ta được

\(B=\left(3.231-\dfrac{1}{2}.1384\right)^2\)

\(B=\left(693-692\right)^2\)

\(B=1^2=1\)

19 tháng 8 2018

thank you bạn nha

bài 1:

a) x2 + 10x + 26 + y2 + 2y

= (x2 + 10x + 25) + (y2 + 2y + 1)

= (x + 5)2 + (y + 1)2

b) z2 - 6z + 5 - t2 - 4t

= (z - 3)2 - (t + 2)2

c) x2 - 2xy + 2y2 + 2y + 1

= (x2 - 2xy + y2) + (y2 + 2y + 1)

= (x - y)2 + (y + 1)2

d) 4x2 - 12x - y2 + 2y + 1

= (4x2 - 12x ) - (y2 + 2y + 1)

= ......................................

ok mk nhé!! 4545454654654765765767587876968345232513546546575675767867876876877687975675

3 tháng 9 2016

1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2

b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2

c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2

3 tháng 9 2016

2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16

= x2 + 2xy + y2 + 42 = (x + y)2 + 42

b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36

= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2

c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9

= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2

d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2

= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2

23 tháng 8 2017

1. Điền hạng tử thích hợp vào chố dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.

a) 16x2 +  * .24xy + x

b) * - 42xy + 49y2

c) 25x+ * + 81

d) 64x2 - * +9

2. Viết mỗi bt sau về dạng tổng hoặc hiệu hai bình phương

a) x2 + 10x + 26 + y+ 2y

b) z2 - 6z + 5 - t2 - 4t

c) x2 - 2xy + 2y2 + 2y + 1

d) ( x + y + 4 )( x + y - 4 )

e) ( x + y - 6 )

23 tháng 8 2017

Bài 1: Đề như đã sửa thì cách giải như sau: 
Trong Tam giác ABC 
Có AM/AB = AN/AC 
Suy ra: MN // BC . 

Trong tam giác ABI 
có 
MK // BI do K thuộc MN 
Do đó : MK/BI =AM/AB (1) 

Tương tự trong tam giác AIC 
Có NK// IC nên NK/IC = AN/AC (2) 

Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB 
Lại có IC = IB ( t/c trung tuyến) 
nên NK = MK (ĐPCM) 

Bài 2: 
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a) 
Từ A kẻ đường cao AH ( H thuộc BC). 

b) Do tam giác ABC vuông tại A áp dụng pitago ta có 
BC=căn(AB mũ 2 + AC mũ 2)= 20cm 

d) Có S(ABC)= AB*AC/2= AH*BC/2 
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm 

c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức: 

BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45) 
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2) 

Trừ vế với vế có: 
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45) 
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD. 
400-40*DC= -112+................ 
Suy 128- 10*DC= Căn(2) * AD (3) 

Thay (3) v ào (2): rính được DC = 80/7 cm; 

BD= BC - DC= 60/7 cm; 


a) Ta có S(ABD)=AH*BD/2 
S(ADC)=AH*DC/2 
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;

21 tháng 8 2023

a) \(x^2+4x+4\)

\(=x^2+2\cdot2\cdot x+2^2\)

\(=\left(x+2\right)^2\)

b) \(4x^2-4x+1\)

\(=\left(2x\right)^2-2\cdot2x\cdot1+1^2\)

\(=\left(2x-1\right)^2\)

c) \(x^2-x+\dfrac{1}{4}\)

\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2\)

\(=\left(x-\dfrac{1}{2}\right)^2\)

d) \(4\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=\left[2\left(x+y\right)\right]^2-2\cdot2\left(x+y\right)\cdot1+1^2\)

\(=\left[2\left(x+y\right)-1\right]^2\)

\(=\left(2x+2y-1\right)^2\)

2 tháng 5 2018

a) ( x   +   1 ) 2 .                     b) ( x   –   4 ) 2 .

c) x 2 4 + x + 1 ;                   d) ( 2 x   –   2 y ) 2 .

29 tháng 6 2015

1)a)x2+10x+26+y2+2y

=(x2+10x+25)+(y2+2y+1)

=(x+5)2+(y+1)2

b)x2-2xy+2y2+2y+1

=(x2-2xy+y2)+(y2+2y+1)

=(x-y)2+(y+1)2

c)z2-6z+13+t2+4t

=(z2-6z+9)+(t2+4t+4)

=(z-3)2+(t+2)2

d)4x2+2z2-4xz-2z+1

=(4x2-4xz+z2)+(z2-2z+1)

=(2x-z)2+(z-1)2

2)a)(x-3)2-4=0

<=>(x-3-2)(x-3+2)=0

<=>(x-5)(x-1)=0

<=>x-5=0 hoặc x-1=0

<=>x=5 hoặc x=1

b)x2-2x=24

<=>x2-2x-24=0

<=>(x2-6x)+(4x-24)=0

<=>x(x-6)+4(x-6)=0

<=>(x-6)(x+4)=0

<=>x-6=0 hoặc x+4=0

<=>x=6 hoặc x=-4

29 tháng 6 2015

a) x^2 + 10x + 26 + y^2 + 2y

=x2+10x+25+y2+2y+1

=x2+2.x.5+52+y2+2.y.1+12

=(x+5)2+(y+1)2

b)x^2 - 2xy + 2y^2 + 2y +1

=x2-2xy+y2+y2+2y+1

=(x-y)2+(y+1)2

c)z^2 - 6z + 13 + t^2 + 4t

=z2-6z+9+t2+4z+4

=z2-2.z.3+32+t2+2.t.2+22

=(z-3)2+(t+2)2

d)4x^2 + 2z^2 - 4xz - 2z + 1

=4x2-4xz+z2+z2-2z+1

=(2x)2-2.2x.z+z2+z2-2z.1+12

=(2x-z)2+(z-1)2

28 tháng 7 2015

 

a) x2+10x+26+y2+2y

=x2+10x+25+y2+2y+1

=(x+5)2+(y+1)2

 

b) z2-6z+5-t2-4t

=z2-6z+9-t2-4t-4

=(z-3)2-(t2+4t+4)

=(z-3)2-(t+2)2

 

c)x2-2xy+2y2+2y+1

=x2-2xy+y2+y2+2y+1

=(x-y)2+(y+1)2

 

d) 4x2-12x-y2+2y+8

=4x2-12x+9-y2+2y-1

=(2x-3)2-(y2-2y+1)

=(2x-3)2-(y-1)2

    

29 tháng 6 2018

bạn ơi , bạn lấy bài này ở đâu vậy bạn

7 tháng 1 2018
\(a,\dfrac{2x+2y}{a^2+2ab+b^2}.\dfrac{ax-ay+bx-by}{2x^2-2y^2}\)

\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{a\left(x-y\right)+b\left(x-y\right)}{2\left(x^2-y^2\right)}\)

\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{\left(x-y\right)\left(a+b\right)}{2\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{1}{a+b}\)


\(b,\dfrac{a+b-c}{a^2+2ab+b^2-c^2}.\dfrac{a^2+2ab+b^2+ac+bc}{a^2-b^2}\)

\(=\dfrac{a+b-c}{\left(a+b\right)^2-c^2}.\dfrac{\left(a+b\right)^2+c\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}\)

\(=\dfrac{a+b-c}{\left(a+b-c\right)\left(a+b+c\right)}.\dfrac{\left(a+b\right)\left(a+b+c\right)}{\left(a-b\right)\left(a+b\right)}\)

\(=\dfrac{1}{a-b}\)

\(c,\dfrac{x^3+1}{x^2+2x+1}.\dfrac{x^2-1}{2x^2-2x+2}\)

\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)^2}.\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x^2-x+1\right)}\) \(=\dfrac{x-1}{2}\) \(d,\dfrac{x^8-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4\right)^2-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4-1\right)\left(x^4+1\right)}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^2+1\right)\left(x^2-1\right)}{x+1}.\dfrac{1}{x^2+1}\) \(=\dfrac{\left(x-1\right)\left(x+1\right)}{x+1}\) \(=x-1\) \(e,\dfrac{x-y}{xy+y^2}-\dfrac{3x+y}{x^2-xy}.\dfrac{y-x}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x\left(x-y\right)}.\dfrac{-\left(x-y\right)}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x}.\dfrac{-1}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{-3x-y}{x\left(x+y\right)}\) \(=\dfrac{x\left(x-y\right)+y\left(3x+y\right)}{xy\left(x+y\right)}\) \(=\dfrac{x^2-xy+3xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{x^2+2xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}=\dfrac{x+y}{xy}\)
19 tháng 2 2018

tìm giá trị của m để pt 2x-m=1-x nhận giá trị x=-2 là nghiệm

giải hộ e với :)