Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, -x3+3x2-3x+1
=1-3x.12+3.1.x2-x3
=(1-3x)3
bài này là hằng đẳng thức số 5: (a-b)3=a3-3a2b+3ab2-b2
3, ta có:
x3+8y3=x3+(2y)3=(x+2y)(x2-2xy+4y2
đây là hằng đẳng thức số 6
a) ( 3x + 5 )2 = 9x2+30x+25
b) ( x2- 4y )2 = x4 - 8x2y + 16y2
c) ( 8y+1 )( 8y-1 ) = 64y2 - 1
d) ( 2x3+1 ) = 8x9+6x6+6x3+1
e) 27y3 - 8 = ( 3y )3 - 23 = ( 3y -2 )( 9y2+6y+4 )
f)125 + 27y3 = 53 + ( 3y )3 = ( 5+3y )( 25+30y+9y2 )
Hk tốt
a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)
b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)
Ta có: \(\dfrac{x-1}{6}=\dfrac{-2y+3}{30}\)
\(\Leftrightarrow\dfrac{3x-3}{18}=\dfrac{-8y+12}{120}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x-3}{18}=\dfrac{-8y+12}{120}=\dfrac{3x-3+8y-12}{18-120}=\dfrac{2-15}{-102}=\dfrac{13}{102}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x-1}{6}=\dfrac{13}{102}\\\dfrac{3-2y}{30}=\dfrac{13}{102}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=\dfrac{13}{17}\\-2y+3=\dfrac{65}{17}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{30}{17}\\-2y=\dfrac{14}{17}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{30}{17}\\y=\dfrac{-7}{17}\end{matrix}\right.\)
Ta có: 5x - 5 = 3 - 2y
=> 5x+2y = 8
=> 20x + 8y = 32
Mà 3x +8y = 2
=> 17x = 30
=> x = \(\dfrac{30}{7}\)
=> y = ... giải tiếp nha bạn.
Xin 1 like nha bạn. Thx bạn
Ta có :\(15x=10y=6z\Rightarrow\hept{\begin{cases}15x=10y\\10y=6z\end{cases}}\Rightarrow\hept{\begin{cases}3x=2y\\5y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\end{cases}}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Khi đó 5x3 + 2y3 - z3 = 31
=> 5(2k)3 + 2(3k)3 - (5k)3 = 31
=> 40k3 + 54k3 - 125k3 = 31
=> -31k3 = 31
=> k3 = -1
=> k = -1
=> x = -2 ; y = -3 ; z = -5
b) Ta có 7x = 14y = 6z => \(\hept{\begin{cases}7x=14y\\14y=6z\end{cases}}\Rightarrow\hept{\begin{cases}x=2y\\7y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{1}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{6}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\frac{x}{6}=\frac{y}{3}=\frac{z}{7}\)
Đặt \(\frac{x}{6}=\frac{y}{3}=\frac{z}{7}=k\Rightarrow\hept{\begin{cases}x=6k\\y=3k\\z=7k\end{cases}}\)
Khi đó 2x2 - 3y2 = 5
<=> 2.(6k)2 - 3.(3k)2 = 5
=> 72k2 - 27k2 = 5
=> 45k2 = 5
=> k2 = 1/9
=> k = \(\pm\frac{1}{3}\)
Nếu k = 1/3 => x = 2 ; y = 1 ; z = 7/3
Nếu k = -1/3 => x = -2 ; y = - 1 ; z = -7/3
Vậy các cặp (x;y;z) thỏa mãn là : (2;1;7/3) ; (-2 ; - 1; -7/3)
c) Ta có : \(3x=8y=5z\Rightarrow\frac{3x}{120}=\frac{8y}{120}=\frac{5z}{120}\Rightarrow\frac{x}{40}=\frac{y}{15}=\frac{z}{24}\)
Đặt \(\frac{x}{40}=\frac{y}{15}=\frac{z}{24}=k\Rightarrow\hept{\begin{cases}x=40k\\y=15k\\z=24k\end{cases}}\)
Khi đó |x - 2y| = 5
<=> |40k - 2.15k| = 5
=> |10k| = 5
=> \(\orbr{\begin{cases}10k=5\\10k=-5\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{1}{2}\\k=-\frac{1}{2}\end{cases}}\)
Nếu k = 5 => x = 20 ; y = 7,5 ; z = 12
Nếu k = -5 => x = -20 ; y =-7,5 ; z = -12
d) 4x = 5y = 6z => \(\frac{4x}{60}=\frac{5y}{60}=\frac{6z}{60}\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{10}\)
Đặt \(\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=k\Rightarrow\hept{\begin{cases}x=15k\\y=12k\\z=10k\end{cases}}\)
Khi đó (3x - 2y)2 = 16
<=> (3.15k - 2.12k)2 = 16
=> (45k -24k)2 = 16
=> (21k)2 = 16
=> \(\orbr{\begin{cases}21k=4\\21k=-4\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{4}{21}\\k=-\frac{4}{21}\end{cases}}\)
Nếu k = 4/21 => x = 20/7 ; y = 16/7 ; z = 40/21
Nếu k = -4/21 => x = -20/7 ; y = -16/7 ; z = -40/21
a) \(\left(3x+y-z\right)-\left(4x-2y+6z\right)\)
\(=3x+y-z-4x+2y-6z\)
\(=-x+3y-7z\)
b) \(\left(x^3+6x^2+5y^3\right)-\left(2x^3-5x+7y^3\right)\)
\(=x^3+6x^2+5y^3-2x^3+5x-7y^3\)
\(=-x^3+6x^2+5x-2y^3\)
c) \(\left(5,7x^{2y}-3,1xy+8y^3\right)-\left(6,9xy-2,3x^{2y}-8y^3\right)\)
\(=5,7x^{2y}-3,1xy+8y^3-6,9xy+2,3x^{2y}+8y^3\)
\(=8x^{2y}-10xy+16y^3\)
\(27x^3\)\(+\)\(8y^3\)\(=\)\(3^3\times x^3\)\(+\)\(2^3\times y^3\)\(=\)\((3x)^3\)\(+\)\((2y)^3\)\(=\)\((3x+2y)\)\(\times\)\((3^2\times x^2-3x\times2y+2^2\times y^2)\)
Khai triển các tích sau
a) (3x+5)^2 e) 27y^3-8
b) (x^2-4y)^2
c) (8y+1) (8y-1)
d) (2x^3+1)^3
f) 125+27y^3