Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ox: y=0
=>0x+y+0=0
=>VTPT là (0;1); VTCP là (-1;0)
Phương trình tham số là:
\(\left\{{}\begin{matrix}x=-1+\left(-1\right)t=-t-1\\y=2+0t=2\end{matrix}\right.\)
Phương trình tổng quát là:
0(x+1)+1(y-2)=0
=>y-2=0
=>y=2
14.
\(\overrightarrow{AB}=\left(-3;10\right)\) nên pt tham số của AB là: \(\left\{{}\begin{matrix}x=3-3t\\y=-4+10t\end{matrix}\right.\)
15.
Do d song song delta nên d nhận \(\left(2;-1\right)\) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=2t\\y=-4-t\end{matrix}\right.\)
18.
d có vtcp là (2;3) nên d nhận (3;-2) là 1 vtpt
Phương trình d:
\(3\left(x+1\right)-2\left(y-0\right)=0\Leftrightarrow3x-2y+3=0\)
19.
\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt
Phương trình d:
\(4\left(x+2\right)+3\left(y-4\right)=0\Leftrightarrow4x+3y-4=0\)
a.
Do d vuông góc với \(\Delta\) nên d nhận \(\left(1;-3\right)\) là 1 vtpt
Phương trình d:
\(1\left(x+1\right)-3\left(y-1\right)=0\Leftrightarrow x-3y+4=0\)
b.
\(M\in d\) mà \(MH\perp\Delta\Rightarrow\) H là giao điểm của d và \(\Delta\)
Tọa độ H là nghiệm của hệ:
\(\left\{{}\begin{matrix}x-3y+4=0\\3x+y-8=0\end{matrix}\right.\) \(\Rightarrow H\left(2;2\right)\)
c.
M' đối xứng với M qua \(\Delta\) khi và chỉ khi H là trung điểm MM'
Theo công thức trung điểm:
\(\left\{{}\begin{matrix}x_{M'}=2x_H-x_M=5\\y_{M'}=2y_H-y_M=3\end{matrix}\right.\) \(\Rightarrow M'\left(5;3\right)\)
Tại sao lại đổi từ (3; 1) sang (1; -3 ) vậy ạ? Denlta có dạng pttq thì có vtpt và đường thẳng d cũng vuông góc với denlta rồi mà?
20.
Đề bài sai, điểm A ko thuộc trục tọa độ
21.
Do d song song delta nên d nhận \(\left(1;-4\right)\) là 1 vtcp
Phương trình tham số: \(\left\{{}\begin{matrix}x=-2+t\\t=3-4t\end{matrix}\right.\)
a, Đường phân giác góc phần tư thứ nhất là một nửa đường thẳng x - y = 0 nằm ở góc phần tư thứ nhất
=> d nhận (1 ; -1) làm vecto pháp tuyến
=> PT đi qua M (-2 ; -5) là
x + 2 - y - 5 = 0 ⇔ x - y - 3 = 0
b, c, Lười lắm ko làm đâu :)
33.
Đường thẳng d song song \(\Delta\) nên nhận \(\left(3;-4\right)\) là 1 vtpt
\(\Rightarrow\) Nhận \(\left(4;3\right)\) là 1 vtcp
Phương trình tham số: \(\left\{{}\begin{matrix}x=4t\\y=3t\end{matrix}\right.\)
41.
\(\Delta_1\) nhận \(\left(2;-3m\right)\) là 1 vtpt
\(\Delta_2\) nhận \(\left(m;4\right)\) là 1 vtpt
Để 2 đường thẳng cắt nhau
\(\Leftrightarrow2.4\ne-3m^2\Leftrightarrow m^2\ne-\frac{8}{3}\) (luôn đúng)
Vậy hai đường thẳng cắt nhau với mọi m
21.
\(\overrightarrow{AB}=\left(-2;2\right)=-2\left(1;-1\right)\) nên pt đường thẳng AB:
\(1\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow x+y-3=0\)
\(\overrightarrow{CD}=\left(-5;0\right)=-5\left(1;0\right)\) nên pt CD có dạng:
\(0\left(x-2\right)+1\left(y-2\right)=0\Leftrightarrow y-2=0\)
Giao điểm 2 đường thẳng có tọa độ là nghiệm: \(\left\{{}\begin{matrix}x+y-3=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
31.
\(\Delta_1\) nhận \(\left(m+1;-1\right)\) là 1 vtcp
\(\Delta_2\) nhận \(\left(3;-4\right)\) là 1 vtpt
Để hai đường thẳng song song:
\(3\left(m+1\right)+4=0\Rightarrow m=-\frac{7}{3}\)
viết phương trình đường thẳng d đi qua A(1,1) và tạo với đường thẳng denta: -x+5y-7 =0 một góc 45 độ
Lời giải:
Gọi PTĐT $(d)$ có dạng $ax+by+c=0$
Vì $A\in (d)$ nên $a.1+b.1+c=a+b+c=0(1)$
VTPT của $(d)$ là $(a,b)$. VTPT của $(\Delta)$ là $(-1,5)$
Góc giữa $(d)$ và $(\Delta)$:
\(\cos 45^0=\frac{|-a+5b|}{\sqrt{(-1)^2+5^2}.\sqrt{a^2+b^2}}=\frac{|-a+5b|}{\sqrt{26(a^2+b^2)}}=\frac{\sqrt{2}}{2}\)
$\Rightarrow 12a^2=12b^2-10ab$
$\Leftrightarrow 6a^2-6b^2+5ab=0$
$\Leftrightarrow (3a-2b)(2a+3b)=0$
$\Rightarrow 3a=2b$ hoặc $2a+3b=0$
Nếu $a=\frac{2}{3}b$ thì:
$ax+by+c=\frac{2}{3}bx+by+(-a-b)=\frac{2}{3}bx+by-\frac{5}{3}b=0$
$\Leftrightarrow \frac{2}{3}x+y-\frac{5}{3}=0$
$\Leftrightarrow 2x+3y-5=0$
Đây là 1 PT cần tìm
TH $a=\frac{-3b}{2}$ làm tương tự.
Ox: y=0
=>0x+y+0=0
=>VTPT là (0;1)
Vì (Δ) vuông góc với Ox nên Δ nhận vecto v=(0;1) làm vecto chỉ phương
=>VTPT là (-1;0)
Phương trình tổng quát là:
-1(x+1)+0(y-2)=0
=>x=-1
Phương trình tham số là:
\(\left\{{}\begin{matrix}x=-1+0\cdot t=-1\\y=2+t\end{matrix}\right.\)