K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: (C): x^2-4x+4+y^2+6y+9=25

=>(x-2)^2+(y+3)^2=25

=>R=5; I(2;-3)

\(IM=\sqrt{\left(5-2\right)^2+\left(1+3\right)^2}=5\)

=>M thuộc (C)

vecto IM=(3;4)

Phương trình tiếp tuyến tại M là:

3(x-2)+4(y+3)=0

=>3x-6+4y+12=0

=>3x+4y+6=0

b: (d)//-3x+4y+3=0

=>(d): -3x+4y+c=0; I(2;-3)

d(I;(d))=5

=>\(\dfrac{\left|2\cdot\left(-3\right)+4\cdot\left(-3\right)+c\right|}{\sqrt{\left(-3\right)^2+4^2}}=5\)

=>|c-18|=25

=>c=43 hoặc c=-7

c: (d) vuông góc (-3x+4y+3)=0

=>(d): 4x+3y+c=0

I(2;-3)

\(d\left(I;\left(d\right)\right)=5\)

=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot3+c\right|}{5}=5\)

=>|c-1|=25

=>c=26 hoặc c=-24

10 tháng 3 2022

Gọi đường thẳng đi qua A là d'.

a) Ta có: \(d'\perp d.\)

\(\Rightarrow\) VTPT của d là VTCP của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)

b) Ta có: \(d'//d.\)

\(\Rightarrow\) VTPT của d là VTPT của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)

12 tháng 3 2023

\(a,\) \(\left\{{}\begin{matrix}-2a=-4\\-2b=6\\c=-12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-3\\c=-12\end{matrix}\right.\)

\(\Rightarrow I\left(2;-3\right)\)

\(\overrightarrow{IM}=\left(3;4\right)\Rightarrow IM=\sqrt{3^2+4^2}=5\)

Bán kính \(R=\dfrac{IM}{2}=\dfrac{5}{2}=2,5\)

Vậy pt \(\left(C\right):\left(x-2\right)^2+\left(y+3\right)^2=\dfrac{\sqrt{10}}{2}\)

a: (C): x^2-4x+4+y^2+6y+9=25

=>(x-2)^2+(y+3)^2=25

=>R=5; I(2;-3)

\(IM=\sqrt{\left(5-2\right)^2+\left(1+3\right)^2}=5\)

=>M thuộc (C)

vecto IM=(3;4)

Phương trình tiếp tuyến tại M là:

3(x-2)+4(y+3)=0

=>3x-6+4y+12=0

=>3x+4y+6=0

b: (d)//-3x+4y+3=0

=>(d): -3x+4y+c=0; I(2;-3)

d(I;(d))=5

=>\(\dfrac{\left|2\cdot\left(-3\right)+4\cdot\left(-3\right)+c\right|}{\sqrt{\left(-3\right)^2+4^2}}=5\)

=>|c-18|=25

=>c=43 hoặc c=-7

c: (d) vuông góc (-3x+4y+3)=0

=>(d): 4x+3y+c=0

I(2;-3)

\(d\left(I;\left(d\right)\right)=5\)

=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot3+c\right|}{5}=5\)

=>|c-1|=25

=>c=26 hoặc c=-24

a: (C): x^2-4x+4+y^2+6y+9=25

=>(x-2)^2+(y+3)^2=25

=>R=5; I(2;-3)

\(IM=\sqrt{\left(5-2\right)^2+\left(1+3\right)^2}=5\)

=>M thuộc (C)

vecto IM=(3;4)

Phương trình tiếp tuyến tại M là:

3(x-2)+4(y+3)=0

=>3x-6+4y+12=0

=>3x+4y+6=0

b: (d)//-3x+4y+3=0

=>(d): -3x+4y+c=0; I(2;-3)

d(I;(d))=5

=>\(\dfrac{\left|2\cdot\left(-3\right)+4\cdot\left(-3\right)+c\right|}{\sqrt{\left(-3\right)^2+4^2}}=5\)

=>|c-18|=25

=>c=43 hoặc c=-7

c: (d) vuông góc (-3x+4y+3)=0

=>(d): 4x+3y+c=0

I(2;-3)

\(d\left(I;\left(d\right)\right)=5\)

=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot3+c\right|}{5}=5\)

=>|c-1|=25

=>c=26 hoặc c=-24

a: (C): x^2-4x+4+y^2+6y+9=25

=>(x-2)^2+(y+3)^2=25

=>R=5; I(2;-3)

\(IM=\sqrt{\left(5-2\right)^2+\left(1+3\right)^2}=5\)

=>M thuộc (C)

vecto IM=(3;4)

Phương trình tiếp tuyến tại M là:

3(x-2)+4(y+3)=0

=>3x-6+4y+12=0

=>3x+4y+6=0

b: (d)//-3x+4y+3=0

=>(d): -3x+4y+c=0; I(2;-3)

d(I;(d))=5

=>\(\dfrac{\left|2\cdot\left(-3\right)+4\cdot\left(-3\right)+c\right|}{\sqrt{\left(-3\right)^2+4^2}}=5\)

=>|c-18|=25

=>c=43 hoặc c=-7

c: (d) vuông góc (-3x+4y+3)=0

=>(d): 4x+3y+c=0

I(2;-3)

\(d\left(I;\left(d\right)\right)=5\)

=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot3+c\right|}{5}=5\)

=>|c-1|=25

=>c=26 hoặc c=-24

 

a: (C): x^2-4x+4+y^2+6y+9=25

=>(x-2)^2+(y+3)^2=25

=>R=5; I(2;-3)

\(IM=\sqrt{\left(5-2\right)^2+\left(1+3\right)^2}=5\)

=>M thuộc (C)

vecto IM=(3;4)

Phương trình tiếp tuyến tại M là:

3(x-2)+4(y+3)=0

=>3x-6+4y+12=0

=>3x+4y+6=0

b: (d)//-3x+4y+3=0

=>(d): -3x+4y+c=0; I(2;-3)

d(I;(d))=5

=>\(\dfrac{\left|2\cdot\left(-3\right)+4\cdot\left(-3\right)+c\right|}{\sqrt{\left(-3\right)^2+4^2}}=5\)

=>|c-18|=25

=>c=43 hoặc c=-7

c: (d) vuông góc (-3x+4y+3)=0

=>(d): 4x+3y+c=0

I(2;-3)

\(d\left(I;\left(d\right)\right)=5\)

=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot3+c\right|}{5}=5\)

=>|c-1|=25

=>c=26 hoặc c=-24

a: (C): x^2-4x+4+y^2+6y+9=25

=>(x-2)^2+(y+3)^2=25

=>R=5; I(2;-3)

\(IM=\sqrt{\left(5-2\right)^2+\left(1+3\right)^2}=5\)

=>M thuộc (C)

vecto IM=(3;4)

Phương trình tiếp tuyến tại M là:

3(x-2)+4(y+3)=0

=>3x-6+4y+12=0

=>3x+4y+6=0

b: (d)//-3x+4y+3=0

=>(d): -3x+4y+c=0; I(2;-3)

d(I;(d))=5

=>\(\dfrac{\left|2\cdot\left(-3\right)+4\cdot\left(-3\right)+c\right|}{\sqrt{\left(-3\right)^2+4^2}}=5\)

=>|c-18|=25

=>c=43 hoặc c=-7

c: (d) vuông góc (-3x+4y+3)=0

=>(d): 4x+3y+c=0

I(2;-3)

\(d\left(I;\left(d\right)\right)=5\)

=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot3+c\right|}{5}=5\)

=>|c-1|=25

=>c=26 hoặc c=-24

a: Gọi phương trình đường thẳng cần tìm là (d): ax+by+c=0

Vì (d)//3x-2y-5=0 nên (d) có VTPT là (3;-2)

mà (d) đi qua A(0;2) 

nên phương trình đường thẳng (d) là:

3(x-0)+(-2)(y-2)=0

=>3x-2y+4=0

b: Gọi phương trình đường thẳng cần tìm là (d): ax+by+c=0

Vì (d)\(\perp\)(3x-2y-5=0) nên (d) nhận \(\overrightarrow{u}=\left(3;-2\right)\) làm vecto chỉ phương

=>VTPT của (d) là (2;3)

mà (d) đi qua A(0;2)

nên phương trình đường thẳng (d) là:

2(x-0)+3(y-2)=0

=>2x+3y-6=0

c: Đặt (d1): \(\left\{{}\begin{matrix}x=1-2t\\y=3-5t\end{matrix}\right.\)

=>VTCP là (-2;-5)=(2;5)

=>VTPT là (-5;2)

Gọi (d): ax+by+c=0 là phương trình đường thẳng cần tìm

Vì (d)//(d1) nên (d) nhận \(\overrightarrow{v}=\left(-5;2\right)\) làm vecto pháp tuyến

Vì (d) nhận \(\overrightarrow{v}=\left(-5;2\right)\) làm vecto pháp tuyến và (d) đi qua B(-1;5) nên phương trình đường thẳng (d) là:

-5(x+1)+2(y-5)=0

=>-5x-5+2y-10=0

=>-5x+2y-15=0

d: Đặt (d2): \(\left\{{}\begin{matrix}x=1-2t\\y=3-5t\end{matrix}\right.\)

=>VTCP là (-2;-5)=(2;5)

Gọi (d): ax+by+c=0 là phương trình đường thẳng cần tìm

Vì (d)\(\perp\)(d2) và \(\overrightarrow{u}=\left(2;5\right)\) là vecto chỉ phương của (d2) nên (d) nhận \(\overrightarrow{u}=\left(2;5\right)\) làm vecto pháp tuyến

mà (d) đi qua B(-1;5) 

nên phương trình đường thẳng (d) là:

2(x+1)+5(y-5)=0

=>2x+2+5y-25=0

=>2x+5y-23=0