Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\Delta_a\) : 3 (x-1) - 2 (y-1) =3x-2y-1=0
b, \(\Delta_b\) : y=-\(\dfrac{1}{2}\)(x-2) =-\(\dfrac{1}{2}\)x =>\(\Delta_b\) : x+2y=0
c,\(\overrightarrow{AB}\)=(-2;-3) =>vtpt \(\overrightarrow{n}\)=(3;-2)
=>\(\Delta_c\): 3 (x-2) - 2(y-0) =0
=>\(\Delta_c\): 3x-2y-6=0
Lời giải
a) \(\Delta_a=3\left(x-1\right)-2\left(y-1\right)=3x-2y+5=0\)
b)\(\Delta_b:y=-\dfrac{1}{2}\left(x-2\right)-1=-\dfrac{1}{2}x\Rightarrow\Delta_b:x+2y=0\)
c) \(\Delta_c:\left(3+0\right)\left(x-2\right)+\left(0-2\right)\left(y-0\right)=3x-2y-6\)
a. phương trình tham số d có dạng : \(\left\{{}\begin{matrix}x=2+3t\\y=1+4t\end{matrix}\right.\)
b. phương trình tham số d có dạng: \(\left\{{}\begin{matrix}x=-2+5t\\y=3+t\end{matrix}\right.\)
ta có \(\overrightarrow{MN=}\left(-4;-1\right)\) là vecto chỉ phương của đường thẳng cần tìm ( gọi là đường thẳng d )
Khi đó phương trình đường thẳng d có dạng : \(\left\{{}\begin{matrix}x=-4t\\y=-1-t\end{matrix}\right.\)( khi lấy điểm N là điểm đi qua)
hoặc \(\left\{{}\begin{matrix}x=4-4t\\y=-t\end{matrix}\right.\)( khi lấy điểm M là điểm đi qua)
a) \(\left\{{}\begin{matrix}x=-5+4t\\y=-2-3t\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x=\sqrt{3}+2t\\y=1+3t\end{matrix}\right.\)
a) Sử dụng phương trình đường tròn : x2 - y2 - ax – 2by +c = 0
Đường tròn đi qua điểm A(1; 2):
12 + 22 – 2a -4b + c = 0 <=> 2a + 4b – c = 5
Đường tròn đi qua điểm B(5; 2):
52 + 22 – 10a -4b + c = 0 <=> 10a + 4b – c = 29
Đường tròn đi qua điểm C(1; -3):
12 + (-3)2 – 2a + 6b + c = 0 <=> 2a - 6b – c = 10
Để tìm a, b, c ta giải hệ:
Lấy (2) trừ cho (1) ta được phương trình: 8a = 24 => a = 3
Lấy (3) trừ cho (1) ta được phương trình: -10b = 5 => b = - 0,5
Thế a = 3 ; b = -0.5 vào (1) ta tính được c = -1
Ta được phương trình đường tròn đi qua ba điểm A, B, C là :
x2 + y2 - 6x + y - 1 = 0.
b) Tương tự ta tính được I(2; 1), R= 5
Phương trình đường tròn đi qua ba điểm M(-2; 4); N(5; 5); P(6; -2) là:
(x - 2)2 + (y – 1)2 = 25 <=> x2 - y2 - 4x – 2y - 20 = 0
pt đường thẳng (AB)d: (x+1)-3(y-2)=x-3y+7=0
đường thẳng (d1) qua M// AB => d1//d
đảm bảo yêu cầu đầu bài
d1: (x-2)-3(x-5)=x-3y+13=0
Có hai trường hợp:
Th1. d đi qua \(M\left(2;5\right)\) và song song với đường thẳng AB.
Một vtcp\(\overrightarrow{v_d}=\overrightarrow{AB}\left(6;2\right)=2\left(3;1\right)\).
Phương trình đường thẳng d là: \(3\left(x-2\right)+1\left(y-5\right)=0\)\(\Leftrightarrow3x+y-11=0\).
Th2. d đi qua \(M\left(2;5\right)\) và trung điểm của AB.
Gọi I là trung điểm của AB.
\(x_I=\dfrac{-1+5}{2}=2;y_I=\dfrac{4+2}{2}=3\).
Vậy \(I\left(2;3\right)\).
Một véc tơ chỉ phương của d là: \(\overrightarrow{MI}=\left(0;-2\right)\).
Phương trình đường thẳng d là: \(0\left(x-2\right)-2\left(y-5\right)=0\)\(\Leftrightarrow y=5\).
\(-5\left(x+4\right)+2\left(y+1\right)=-5x+2y-18\)