Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi pt đường thẳng cần tìm có dạng là (d): x-2y-b=0
Thay x=-1 và y=2 vào (d), ta được:
-1-4-b=0
=>b=-5
Đường tròn tâm O(a,b)
\(\Delta_1\) đi qua \(AB..\Delta_1:\left(x-1\right)-\left(y-2\right)=x-y+1=0\)
\(\Delta_2\) trung trực AB: \(\Delta_2:\left(x-2\right)+\left(y-3\right)=x+y-5=0\)
Tâm (c) phải thuộc \(\Delta_2\) =>O(a,5-a)
Gọi I là điểm tiếp xúc \(\Delta\) và (C) ta có hệ pt
\(\Rightarrow\left\{{}\begin{matrix}OA=OB=\sqrt{\left(a-1\right)^2+\left(5-a-3\right)^2}=R\\OI=\left|3a+\left(5-a\right)-3\right|=\sqrt{10}R\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a^2-2a+1+a^2-4a+4=R^2\\\left(2a+2\right)^2=10R^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a^2-6a+5=R^2\\4a^2+8a+4=10R^2\end{matrix}\right.\)
Lấy [(1) nhân 5] trừ [(2) chia 2]
\(\Leftrightarrow8a^2-32a+23=0\left\{\Delta=16^2-8.23=8.32-8.23=8\left(32-23\right)=2.4.9\right\}\) đề số lẻ thế nhỉ
\(\Rightarrow a=\left[{}\begin{matrix}\dfrac{16-6\sqrt{2}}{8}=2-\dfrac{3\sqrt{2}}{4}\\\dfrac{16+6\sqrt{2}}{8}=2+\dfrac{3\sqrt{2}}{4}\end{matrix}\right.\)
\(\Rightarrow b=\left[{}\begin{matrix}3+\dfrac{3\sqrt{2}}{4}\\3-\dfrac{3\sqrt{2}}{4}\end{matrix}\right.\) \(\Rightarrow R^2=\left[{}\begin{matrix}\dfrac{\left(6-\dfrac{3\sqrt{2}}{2}\right)^2}{10}\\\dfrac{\left(6+\dfrac{3\sqrt{2}}{2}\right)^2}{10}\end{matrix}\right.\)
(C) =(x-2+3sqrt(2)/4)^2 +(y-3-3sqrt(2)/4)^2 =(6-3sqrt(2)/2)^2/10
Giả sử đường thẳng \(\Delta\) cần tìm có phương trình dạng :
\(ax+by+a-3b=0,a^2+b^2\ne0\)
Khi đó :
\(d\left(A;\Delta\right)=\frac{\left|a+2b+a-3b\right|}{\sqrt{a^2+b^2}}=\frac{\left|2a-b\right|}{\sqrt{a^2+b^2}}\)
\(d\left(B;\Delta\right)=\frac{\left|3a+4b+a-3b\right|}{\sqrt{a^2+b^2}}=\frac{\left|4a+b\right|}{\sqrt{a^2+b^2}}\)
Do \(\Delta\) cách đều A, B nên \(d\left(A;\Delta\right)=d\left(B;\Delta\right)\) hay :
\(\frac{\left|2a-b\right|}{\sqrt{a^2+b^2}}=\frac{\left|4a+b\right|}{\sqrt{a^2+b^2}}\)\(\Leftrightarrow\left|2a-b\right|=\left|4a+b\right|\)
\(\Leftrightarrow\begin{cases}a=-b\\a=0\end{cases}\)
- Nếu a=0 thì do \(a^2+b^2\ne0\) nên \(b\ne0\) tùy ý. Do đó, có thể chọn b =1 và ta được \(\Delta_1:y-3=0\)
- Nếu a=-b thì do \(a^2+b^2\ne0\) nên \(b\ne0\) tùy ý. Do đó, có thể chọn a = 1, b=-1 và ta được \(\Delta_2:x-y+4=0\)
Vậy qua C có 2 đường thẳng \(\Delta_1:y-3=0\) và \(\Delta_2:x-y+4=0\) thỏa mãn yêu cầu đề bài
Đường thẳng \(\Delta\) cách đều 2 điểm A, B khi và chỉ khi hoặc \(\Delta\) song song với AB hoặc \(\Delta\) đi qua trung điểm đoạn AB
- Nếu \(\Delta\) // AB thì \(\Delta\) nhận vec tơ \(\overrightarrow{AB}=\left(2;2\right)=2\left(1;1\right)\) làm vec tơ chỉ phương, suy ra nếu có vec tơ pháp tuyến \(\overrightarrow{n}=\left(1;-1\right)\). Vậy \(\Delta:x-y+4=0\)
- Nếu \(\Delta\) đi qua trung điểm M(2;3) của đoạn AB thì \(\Delta\) nhận vec tơ \(\overrightarrow{CM}=\left(3;0\right)=3\left(1;0\right)\) làm vec tơ chỉ phương, suy ra nếu có vec tơ pháp tuyến \(\overrightarrow{m}=\left(0;1\right)\). Vậy \(\Delta:y-3=0\)
àm vec tơ chỉ phương, suy ra nếu có vec tơ pháp tuyến \(\overrightarrow{m}=\left(0;1\right)\). Vậy \(\Delta:y-3=0\)
\(\Delta\) đi qua trung điểm M(2;3) của đoạn AB thì nhận vec tơ \(\overrightarrow{CM}=\left(3;0\right)=3\left(1;0\right)\)
a,\(\Delta_a\) : 3 (x-1) - 2 (y-1) =3x-2y-1=0
b, \(\Delta_b\) : y=-\(\dfrac{1}{2}\)(x-2) =-\(\dfrac{1}{2}\)x =>\(\Delta_b\) : x+2y=0
c,\(\overrightarrow{AB}\)=(-2;-3) =>vtpt \(\overrightarrow{n}\)=(3;-2)
=>\(\Delta_c\): 3 (x-2) - 2(y-0) =0
=>\(\Delta_c\): 3x-2y-6=0
Lời giải
a) \(\Delta_a=3\left(x-1\right)-2\left(y-1\right)=3x-2y+5=0\)
b)\(\Delta_b:y=-\dfrac{1}{2}\left(x-2\right)-1=-\dfrac{1}{2}x\Rightarrow\Delta_b:x+2y=0\)
c) \(\Delta_c:\left(3+0\right)\left(x-2\right)+\left(0-2\right)\left(y-0\right)=3x-2y-6\)
a/ \(\overrightarrow{AB}=\left(1;-2\right)\Rightarrow\) đường thẳng AB có 1 vtpt là \(\left(2;1\right)\)
Phương trình AB:
\(2\left(x-3\right)+1\left(y-4\right)=0\Leftrightarrow2x+y-10=0\)
b/\(\overrightarrow{n_{\Delta}}=\left(2;-3\right)\)
Do \(d//\Delta\Rightarrow d\) nhận \(\left(2;-3\right)\) là 1 vtpt
Phương trình d:
\(2\left(x-1\right)-3\left(y-2\right)=0\Leftrightarrow2x-3y+4=0\)