K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2023

Gọi \(M\left(2;y_M\right)\) là tiếp điểm của (C):

\(\Leftrightarrow2^2+y_M^2-12+2y_M=0\)

\(\Leftrightarrow y_M^2+2y_M-8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y_M=2\\y_M=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}M\left(2;2\right)\\M\left(2;-4\right)\end{matrix}\right.\)

* Với M(2;2)

Ta có: \(\overrightarrow{u}=\overrightarrow{IE}=\left(-1;3\right)\Rightarrow\overrightarrow{n}=\left(3;1\right)\)

\(\Rightarrow\left(D\right):3x+y-8=0\)

* Với M(2; -4)

Ta có: \(\overrightarrow{u}=\overrightarrow{IE}=\left(-1;-3\right)\Rightarrow\overrightarrow{n}=\left(-3;1\right)\)

\(\Rightarrow\left(D\right):-3x+y+4=0\)

4 tháng 2 2017

Đáp án D

18 tháng 6 2017

Ta có:  2 x + y 2 − 5 4 x 2 − y 2 + 6 4 x 2 − 4 x y + y 2 = 0          ( 1 ) 2 x + y + 1 2 x − y = 3       

Với  x = y  ta có  2 ⇒ 3 x + 1 x = 3 ⇔ 3 x 2 - 3 x + 1 = 0 : phương trình vô nghiệm.

Với  2 x = 3 y  ta có  2 ⇒ 4 y + 1 2 y = 3 ⇔ 8 y 2 - 6 y + 1 = 0 ⇔ y = 1 2 y = 1 4

Đáp án cần chọn là: A

30 tháng 9 2018

Điều kiện:  x ≥ 5 3

* ( 10 x + 1 − 9 x + 4 ) + ( 3 x − 5 − 2 x − 2 ) = 0

⇔ 10 x + 1 − ( 9 x + 4 ) 10 x + 1 + 9 x + 4 + 3 x − 5 − ( 2 x − 2 ) 3 x − 5 + 2 x − 2 = 0

⇔ ( x − 3 ) 1 10 x + 1 + 9 x + 4 + 1 3 x − 5 + 2 x − 2 = 0

Vì ∀ x ≥ 5 3 ⇒ ⇔ 1 10 x + 1 + 9 x + 4 + 1 3 x − 5 + 2 x − 2 > 0  nên  1 ⇔ x = 3

Kết hợp điều kiện phương trình có nghiệm duy nhất x = 3

Đáp án cần chọn là: C

14 tháng 5 2017

Đáp án A

NV
30 tháng 12 2020

Pt hoành độ giao điểm:

\(-x^2+2x+3=-2x+1\)

\(\Leftrightarrow x^2-4x-2=0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{6}\Rightarrow y=-3-2\sqrt{6}\\x=2-\sqrt{6}\Rightarrow y=-3+2\sqrt{6}\end{matrix}\right.\)

Vậy tọa độ giao điểm là: \(\left(2+\sqrt{6};-3-2\sqrt{6}\right)\)

 Và \(\left(2-\sqrt{6};-3+2\sqrt{6}\right)\)

30 tháng 12 2020

\(\left(P\right):y=-x^2+2x+3\\ \left(d\right):y=-2x+1\)

xét phương trình hoành độ giao điểm của (P) và (d) 

\(-x^2+2x+3=-2x+1\)

\(< =>-x^2+4x+2=0\)

\(< =>\left[{}\begin{matrix}x=2+\sqrt{6}\\x=2-\sqrt{6}\end{matrix}\right.\)

thay vào (d) => \(\left[{}\begin{matrix}x=2+\sqrt{6}=>y=-3-2\sqrt{6}\\x=2-\sqrt{6}=>y=-3+2\sqrt{6}\end{matrix}\right.\)

vậy ...

 

 

 

a: Vì (d) đi qua A(3;-4) và (0;2) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a+b=-4\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)

b: vì (d)//y=-4x+4 nên a=-4

Vậy:(d): y=-4x+b

Thay x=-2 và y=0 vào (d), ta được:

b+8=0

hay b=-8