Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: vecto AC=(4;-4)=(1;-1)
Phương trìh tham số là:
x=-1+t và y=2-t
b: Tọa độ N là:
\(\left\{{}\begin{matrix}x=\dfrac{-1+3}{2}=\dfrac{2}{2}=1\\y=\dfrac{2-2}{2}=0\end{matrix}\right.\)
N(1;0); B(-2;-1)
vecto BN=(3;1)
Phương trình tham số là:
x=1+3t và y=0+t=t
c: vecto BC=(5;-1)
=>vecto AH=(1;5)
Phương trình tham số AH là:
x=-1+t và y=2+5t
a: vecto AB=(2;2)=(1;1)
=>VTPT là (-1;1)
Phương trình tham số AB là: \(\left\{{}\begin{matrix}x=-1+t\\y=0+t=t\end{matrix}\right.\)
Phương trình tổng quát của AB là:
-1(x+1)+1(y-0)=0
=>-x-1+y=0
=>x-y+1=0
b: vecto BC=(2;0)
Vì AH vuông góc BC
nên AH nhận vecto BC làm vtpt và đi qua A
=>AH: 2(x+1)+0(y-0)=0
=>2x+2=0
=>x=-1
c: Tọa độ M la:
x=(-1+3)/2=2/2=1 và y=(0+2)/2=1
B(1;2); M(1;1)
vecto BM=(0;-1)
=>VTPT là (1;0)
Phương trình BM là:
1(x-1)+0(y-2)=0
=>x-1=0
=>x=1
\(\overrightarrow{AB}\left(2;1\right);\overrightarrow{BC}\left(-3;1\right);\overrightarrow{CA}\left(1;-2\right)\)
\(ptts:\)
\(d_{AB}:\left\{{}\begin{matrix}x=2+2t\\y=t\end{matrix}\right.\)
\(d_{BC}:\left\{{}\begin{matrix}x=4-3t\\y=1+t\end{matrix}\right.\)
\(d_{CA}:\left\{{}\begin{matrix}x=1+t\\y=2-2t\end{matrix}\right.\)
\(pttq:\)
\(d_{AB}:-1\left(x-2\right)+2y=0\Leftrightarrow2y-x+2=0\)
\(d_{BC}:x-4+3\left(y-1\right)=0\Leftrightarrow x+3y-7=0\)
\(d_{CA}:2\left(x-1\right)+y-2=0\Leftrightarrow2x+y-4=0\)
b/ \(\overrightarrow{MB}=\overrightarrow{CM}\Rightarrow M\left(\dfrac{x_B+x_C}{2};\dfrac{y_B+y_C}{2}\right)\Rightarrow M\left(\dfrac{5}{2};\dfrac{3}{2}\right)\)
\(\Rightarrow\overrightarrow{AM}\left(\dfrac{1}{2};\dfrac{3}{2}\right)\Rightarrow\overrightarrow{n_{AM}}=\left(-\dfrac{3}{2};\dfrac{1}{2}\right)\)
\(\Rightarrow d_{AM}:-\dfrac{3}{2}\left(x-2\right)+\dfrac{1}{2}y=0\Leftrightarrow\dfrac{1}{2}y-\dfrac{3}{2}x+3=0\)
Đường cao AH là đường thẳng đi qua A(1; 4) và vuông góc với BC.
= (3; 3) => ⊥ nên nhận vectơ = (3; 3) làm vectơ pháp tuyến và có phương trình tổng quát:
AH : 3(x – 1) + 3(y -4) = 0
3x + 3y – 15 = 0
=> x + y – 5 = 0
Gọi M là trung điểm BC ta có M (; )
Trung tuyến AM là đường thẳng đi qua hai điểm A, M. Theo các viết phương trình đường thẳng đi qua hai điểm trong câu a) ta viết được:
AM : x + y – 5 = 0
a: Tọa độ I là:
\(\left\{{}\begin{matrix}x=\dfrac{-2+6}{2}=\dfrac{4}{2}=2\\y=\dfrac{4-2}{2}=1\end{matrix}\right.\)
b: A(1;3); I(2;1)
vecto AI=(1;-2)
PTTS của AI là;
x=1+t và y=3-2t
d: I(2;1); C(6;-2)
\(R=IC=\sqrt{\left(6-2\right)^2+\left(-2-1\right)^2}=5\)
Phương trình đường tròn đường kính BC là:
(x-2)^2+(y-1)^2=5^2=25
c: vecto BC=(8;-6)=(4;-3)
=>VTPT là (3;4)
Phương trình BC là:
3(x+2)+4(y-4)=0
=>3x+6+4y-16=0
=>3x+4y-10=0
Phương trình AH là:
4(x-1)+(-3)(y-3)=0
=>4x-4-3y+9=0
=>4x-3y+5=0
Tọa độ H là:
4x-3y+5=0 và 3x+4y-10=0
=>x=2/5 và y=11/5
H(0,4; 2,2); A(1;3)
\(AH=\sqrt{\left(1-0,4\right)^2+\left(3-2,2\right)^2}=1\)
f/ Thôi nhiều quá làm biếng, giờ mỗi câu làm 1 ý, bạn tự xử 2 ý còn lại:
\(\overrightarrow{MN}=\left(\frac{3}{2};-2\right)=\frac{1}{2}\left(3;-4\right)\)
Đường thẳng MN nhận \(\left(4;3\right)\) là 1 vtpt và đi qua M nên có pt:
\(4\left(x-1\right)+3\left(y-7\right)=0\Leftrightarrow4x+3y-25=0\)
g/ Trung trực của cạnh BC vuông góc BC nên nhận \(\left(3;1\right)\) là 1 vtpt và đi qua M
Phương trình trung trực BC:
\(3\left(x-1\right)+1\left(y-7\right)=0\Leftrightarrow3x+y-10=0\)
h/ Áp dụng công thức khoảng cách:
\(d\left(C;AB\right)=\frac{\left|4.4+8.3-10\right|}{\sqrt{4^2+3^2}}=6\)
d/ P là trung điểm AB \(\Rightarrow P\left(-\frac{1}{2};4\right)\Rightarrow\overrightarrow{PC}=\left(\frac{9}{2};4\right)=\frac{1}{2}\left(9;8\right)\)
Đường thẳng CP nhận (9;8) là 1 vtcp
Phương trình tham số: \(\left\{{}\begin{matrix}x=4+9t\\y=8+8t\end{matrix}\right.\)
e/ Đường cao AH vuông góc BC nên nhận \(\left(3;1\right)\) là 1 vtpt
Pt AH: \(3\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow3x+y-5=0\)
BK vuông góc AC nên nhận (1;2) là 1 vtpt
Pt BK: \(1\left(x+2\right)+2\left(y-6\right)=0\Leftrightarrow x+2y-10=0\)
CI vuông góc AB nên nhận \(\left(3;-4\right)\) là 1 vtpt
Pt CI: \(3\left(x-4\right)-4\left(y-8\right)=0\Leftrightarrow3x-4y+20=0\)
+ Lập phương trình đường thẳng AB:
Đường thẳng AB nhận
là 1 vtcp ⇒ AB nhận
là 1 vtpt
Mà A(1; 4) thuộc AB
⇒ PT đường thẳng AB: 5(x- 1) + 2(y – 4) = 0 hay 5x + 2y – 13 = 0.
+ Lập phương trình đường thẳng BC:
Đường thẳng BC nhận
là 1 vtcp ⇒ BC nhận
là 1 vtpt
Mà B(3; –1) thuộc BC
⇒ Phương trình đường thẳng BC: 1(x - 3) – 1(y + 1) = 0 hay x – y – 4 = 0.
+ Lập phương trình đường thẳng CA:
Đường thẳng CA nhận
là 1 vtcp ⇒ CA nhận
là 1 vtpt
Mà C(6; 2) thuộc CA
⇒ Phương trình đường thẳng AC: 2(x – 6) + 5(y - 2) = 0 hay 2x + 5y – 22 = 0.
b) + AH là đường cao của tam giác ABC ⇒ AH ⊥ BC
⇒ Đường thẳng AH nhận
là 1 vec tơ pháp tuyến
Mà A(1; 4) thuộc AH
⇒ Phương trình đường thẳng AH: 1(x - 1) + 1(y - 4) = 0 hay x + y – 5 = 0.
+ Trung điểm M của BC có tọa độ
hay
Đường thẳng AM nhận