K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Giải:

Cách 1 : Mặt phẳng trung trực (P) của đoạn thẳng AB chính là đoanh thẳng qua trung điểm I của AB và vuông góc với vectơ

Ta có (2 ; -2; -4) và I(3 ; 2 ; 5) nên phương trình mặ phẳng (P) là:

2(x - 3) - 2(y - 2) - 4(z - 5) = 0 hay x- -2y -2z + 9 = 0.

Cách 2: Mặt phẳng trung trực (P) của đoạn thẳng AB là tập hợp điểm M(x ; y ; z) trong không gian sao cho:

MA = MB ⇔ MA2 = MB2

⇔ (x – 2)2 + (y – 3)2 + (z – 7)2 = (x – 4)2 + (y – 1)2 + (z – 3)2

⇔ - 4x + 4 - 6y + 9 - 14z + 49 = - 8x + 16 - 2y + 1 - 6z +9

⇔ 4x - 4y - 8z + 36 = 0

⇔ x - y - 2z + 9 = 0.

22 tháng 5 2017

Ôn tập chương III

Ôn tập chương III

Ôn tập chương III

23 tháng 2 2018

Đáp án A.

17 tháng 5 2019

Giải bài 2 trang 80 sgk Hình học 12 | Để học tốt Toán 12

12 tháng 10 2017

Đoạn thẳng AB có trung điểm là I(2; 2; 3)

Mặt phẳng trung trực của đoạn AB đi qua I và có vecto pháp tuyến là  n →  =  IB →  = (1; 4; −1). Phương trình mặt phẳng trung trực của đoạn AB là:

1(x – 2) + 4(y – 2) – 1(z – 3) = 0 hay x + 4y – z – 7 = 0.

23 tháng 5 2017

Ôn tập cuối năm môn hình học 12

Ôn tập cuối năm môn hình học 12

22 tháng 5 2017

Ôn tập chương III

Ôn tập chương III

22 tháng 5 2017

Ôn tập chương III

1 tháng 4 2017

Giải:

a) Mặt phẳng (ACD) đi qua A(5 ; 1 ; 3) và chứa giá của các vectơ (0 ; -1 ; 1)

(-1 ; -1 ; 3).

Vectơ = (-2 ; -1 ; -1) vuông góc với mặt phẳng (ACD).

Phương trình (ACD) có dạng:

2(x - 5) + (y - 1) + (z - 3) = 0.

hay 2x + y + z - 14 = 0.

Tương tự: Mặt phẳng (BCD) qua điểm B(1 ; 6 ; 2) và nhận vectơ làm vectơ pháp tuyến.

Ta có :(4 ; -6 ; 2), (3 ; -6 ; 4) và

= (-12 ; -10 ; -6)

Xét (6 ; 5 ; 3) thì nên cũng là vectơ pháp tuyến của mặt phẳng (BCD). Phương trình mặt phẳng (BCD) có dạng:

6(x - 1) + 5(y - 6) +3(z - 2) = 0

hay 6x + 5y + 3z - 42 = 0.

b) Mặt phẳng ( α ) qua cạnh AB và song song với CD thì ( α ) qua A và nhận

(-4 ; 5 ; 1) , (-1 ; 0 ; 2) làm vectơ chỉ phương.

Vectơ = (10 ; 9 ; 5) là vectơ pháp tuyến của ( α ).

Phương trình mặt phẳng ( α ) có dạng : 10x + 9y + 5z - 74 = 0.