K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

Ta có đường thẳng \(\Delta\) có hệ số góc \(k=-1\) do đó góc giữa  \(\Delta\) và Ox bằng \(45^0\). Do d tạo với  \(\Delta\) góc \(60^0\) nên d không có phương vuông góc với Ox. Gọi l là hệ số góc của d khi đó d có phương trình : \(y=l\left(x-1\right)+1\).

Theo định lí ta có :

\(\left|\frac{k-l}{1+kl}\right|=\tan60^0\)\(\Leftrightarrow\left|l+1\right|=\sqrt{3}.\left|1-l\right|\)

Giải phương trình ta được \(l=2\pm\sqrt{3}\)

Vậy ta tìm được 2 đường thẳng  thỏa mãn \(d:y=\left(2\pm\sqrt{3}\right)\left(x-1\right)+1\)

a: y=ax+b

a=tan alpha=1

=>y=x+b

Thay x=-1 và y=1 vào (d), ta được:

b-1=1

=>b=2

=>y=x+2

d: (Δ)//(d) nên Δ: 3x+4y+c=0

(C): x^2+y^2-2x+2y-7=0

=>x^2-2x+1+y^2+2y+1=9

=>(x-1)^2+(y+1)^2=9

=>R=3; I(1;-1)

Theo đề, ta có: d(I;Δ)=3

=>\(\dfrac{\left|1\cdot3+\left(-1\right)\cdot4+c\right|}{\sqrt{3^2+4^2}}=3\)

=>|c-1|=3*5=15

=>c=16 hoặc c=-14

3 tháng 3 2017

Đáp án D

Do đường thẳng d  tạo với trục Ox một góc 600 nên có hệ số góc: k = tan 60 ∘ = 3

Phương trình (d)  là: y = 3 ( x + 1 ) = 2

hay 3 x - y + 3 + 2 = 0

AH
Akai Haruma
Giáo viên
30 tháng 6 2023

Lời giải:
Gọi PTĐT $(d)$ có dạng $ax+by+c=0$

Vì $A\in (d)$ nên $a.1+b.1+c=a+b+c=0(1)$

VTPT của $(d)$ là $(a,b)$. VTPT của $(\Delta)$ là $(-1,5)$

Góc giữa $(d)$ và $(\Delta)$:

\(\cos 45^0=\frac{|-a+5b|}{\sqrt{(-1)^2+5^2}.\sqrt{a^2+b^2}}=\frac{|-a+5b|}{\sqrt{26(a^2+b^2)}}=\frac{\sqrt{2}}{2}\)

$\Rightarrow 12a^2=12b^2-10ab$
$\Leftrightarrow 6a^2-6b^2+5ab=0$
$\Leftrightarrow (3a-2b)(2a+3b)=0$
$\Rightarrow 3a=2b$ hoặc $2a+3b=0$

Nếu $a=\frac{2}{3}b$ thì:

$ax+by+c=\frac{2}{3}bx+by+(-a-b)=\frac{2}{3}bx+by-\frac{5}{3}b=0$

$\Leftrightarrow \frac{2}{3}x+y-\frac{5}{3}=0$ 

$\Leftrightarrow 2x+3y-5=0$ 

Đây là 1 PT cần tìm 

TH $a=\frac{-3b}{2}$ làm tương tự.

31 tháng 1 2022

Gọi \(I\) là tâm nằm trên đường trung trực \(OA\)

 \(\Rightarrow IA=d\left(I,d\right)\Leftrightarrow\sqrt{\left(x_0+1\right)^2+x^2_0}=\dfrac{\left|-x_0+x_0+1-1\right|}{\sqrt{2}}\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-1\end{matrix}\right.\)

Khi đó: \(\left\{{}\begin{matrix}x_0=0\Rightarrow r=1\\x_0=-1\Rightarrow r=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+\left(y-1\right)^2=1\\\left(x+1\right)^2+y^2=1\end{matrix}\right.\)