K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: y=ax+b

a=tan alpha=1

=>y=x+b

Thay x=-1 và y=1 vào (d), ta được:

b-1=1

=>b=2

=>y=x+2

d: (Δ)//(d) nên Δ: 3x+4y+c=0

(C): x^2+y^2-2x+2y-7=0

=>x^2-2x+1+y^2+2y+1=9

=>(x-1)^2+(y+1)^2=9

=>R=3; I(1;-1)

Theo đề, ta có: d(I;Δ)=3

=>\(\dfrac{\left|1\cdot3+\left(-1\right)\cdot4+c\right|}{\sqrt{3^2+4^2}}=3\)

=>|c-1|=3*5=15

=>c=16 hoặc c=-14

NV
1 tháng 5 2020

33.

Đường thẳng d song song \(\Delta\) nên nhận \(\left(3;-4\right)\) là 1 vtpt

\(\Rightarrow\) Nhận \(\left(4;3\right)\) là 1 vtcp

Phương trình tham số: \(\left\{{}\begin{matrix}x=4t\\y=3t\end{matrix}\right.\)

41.

\(\Delta_1\) nhận \(\left(2;-3m\right)\) là 1 vtpt

\(\Delta_2\) nhận \(\left(m;4\right)\) là 1 vtpt

Để 2 đường thẳng cắt nhau

\(\Leftrightarrow2.4\ne-3m^2\Leftrightarrow m^2\ne-\frac{8}{3}\) (luôn đúng)

Vậy hai đường thẳng cắt nhau với mọi m

NV
1 tháng 5 2020

21.

\(\overrightarrow{AB}=\left(-2;2\right)=-2\left(1;-1\right)\) nên pt đường thẳng AB:

\(1\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow x+y-3=0\)

\(\overrightarrow{CD}=\left(-5;0\right)=-5\left(1;0\right)\) nên pt CD có dạng:

\(0\left(x-2\right)+1\left(y-2\right)=0\Leftrightarrow y-2=0\)

Giao điểm 2 đường thẳng có tọa độ là nghiệm: \(\left\{{}\begin{matrix}x+y-3=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

31.

\(\Delta_1\) nhận \(\left(m+1;-1\right)\) là 1 vtcp

\(\Delta_2\) nhận \(\left(3;-4\right)\) là 1 vtpt

Để hai đường thẳng song song:

\(3\left(m+1\right)+4=0\Rightarrow m=-\frac{7}{3}\)

2 tháng 4 2016

Giả sử đường thẳng cần tìm có phương trình dạng \(\frac{x}{a}+\frac{y}{b}=1\) với \(ab\ne0\) suy ra  \(\frac{1}{a}+\frac{2}{b}=1\) (1) và \(\left|a\right|=\left|b\right|\)  (2)

Từ (2) suy ra hoặc a=b hoặc a=-b.

- Khi a=b, thay vào (1) ta được \(\frac{1}{a}+\frac{2}{a}=1\Leftrightarrow a=3\)

Vậy \(\Delta:\frac{x}{3}+\frac{y}{3}=1\) hay \(x+y-3=0\)

 - Khi a=-b thay vào (1) ta được \(\frac{1}{a}-\frac{2}{a}=1\Leftrightarrow a=-1\) vậy \(\Delta:\frac{x}{-1}+\frac{y}{1}=1\) hay \(x-y+1=0\)

Vậy ta tìm đươc 2 đường thẳng đi qua M và chắn trên 2 trục tọa độ các đoạn thẳng bằng nhau là 

\(x+y-3=0\) và \(x-y+1=0\)

 

  O b a 2 1 y x

5:

Gọi (d): y=ax+b là phương trình cần tìm

Theo đề, ta có hệ:
3a+b=-1 và 2a+b=3

=>a=-4 và b=11

=>y=-4x+11

4:

vecto BC=(1;-1)

=>AH có VTPT là (1;-1)

Phương trình AH là:

1(x-1)+(-1)(y+3)=0

=>x-1-y-3=0

=>x-y-4=0

10 tháng 5 2023
8 tháng 4 2017

Lời giải

đường thẳng chắn trên hai trucj tọa đọ hai đoạn thẳng = nhau => Hệ số góc k=-1 hoặc 1

\(\left\{{}\begin{matrix}y=x+b\\y=-x+b\end{matrix}\right.\) đi qua điểm M \(\left\{{}\begin{matrix}b=2-1=1\\b=2+1=3\end{matrix}\right.\)

Phương trình hệ số đường thẳng cần tìm

\(\begin{matrix}d1:y=x+1\\d2:y=-x+3\end{matrix}\)

Phương trình tổng quát

d1: x-y-1=0

d2:x+y-3=0

1 tháng 5 2020

9/ \(\Delta//\left(d\right)\Rightarrow\overrightarrow{n_d}=\left(1;-2\right)\)

\(\Rightarrow\left(d\right):\left(x-1\right)-2\left(y+1\right)=0\)

\(\left(d\right):x-2y-3=0\)

10/ \(\overrightarrow{BC}=\left(-6;8\right)\)

PT đường cao AA' nhận vecto BC làm vtpt

\(\Rightarrow\overrightarrow{n_{AA'}}=\overrightarrow{u_{BC}}=\left(-6;8\right)\)

\(AA':-6\left(x-1\right)+8\left(y+2\right)=0\)

\(AA'=-6x+8y+22=0\)

18/ Trong quá trình làm bài, mình rút ra kết luận sau: Nếu một đường thẳng chắn 2 trục toạ độ 2 đoạn có độ dài bằng nhau thì ptđt có hệ số góc là \(k=\pm1\)

Để mình chứng minh lại:

Đường thẳng có dạng : y= ax+b

\(\Rightarrow\) Nó cắt trục Oy tại điểm có toạ độ là \(\left(0;b\right)\)

Và cắt trục Ox tại điểm có toạ độ là \(\left(-\frac{b}{a};0\right)\)

Vì khoảng cách từ O đến từng điểm là như nhau

\(\Rightarrow\left|b\right|=\left|\frac{b}{a}\right|\Leftrightarrow\left[{}\begin{matrix}b=\frac{b}{a}\\b=-\frac{b}{a}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{u}=\left(1;1\right)\\\overrightarrow{u}=\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(d\right):x-2+y+3=0\\\left(d\right):x-2-y-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left(d\right):x+y+1=0\\\left(d\right):x-y-5=0\end{matrix}\right.\)

NV
24 tháng 3 2023

a.

Do d vuông góc với \(\Delta\) nên d nhận \(\left(1;-3\right)\) là 1 vtpt

Phương trình d:

\(1\left(x+1\right)-3\left(y-1\right)=0\Leftrightarrow x-3y+4=0\)

b.

\(M\in d\) mà \(MH\perp\Delta\Rightarrow\) H là giao điểm của d và \(\Delta\)

Tọa độ H là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-3y+4=0\\3x+y-8=0\end{matrix}\right.\) \(\Rightarrow H\left(2;2\right)\)

c.

M' đối xứng với M qua \(\Delta\) khi và chỉ khi H là trung điểm MM'

Theo công thức trung điểm:

\(\left\{{}\begin{matrix}x_{M'}=2x_H-x_M=5\\y_{M'}=2y_H-y_M=3\end{matrix}\right.\) \(\Rightarrow M'\left(5;3\right)\)

26 tháng 3 2023

Tại sao lại đổi từ (3; 1) sang (1; -3 ) vậy ạ? Denlta có dạng pttq thì có vtpt và đường thẳng d cũng vuông góc với denlta rồi mà?

10 tháng 4 2017

pt đường thẳng (AB)d: (x+1)-3(y-2)=x-3y+7=0

đường thẳng (d1) qua M// AB => d1//d

đảm bảo yêu cầu đầu bài

d1: (x-2)-3(x-5)=x-3y+13=0

5 tháng 6 2017

Có hai trường hợp:
Th1. d đi qua \(M\left(2;5\right)\) và song song với đường thẳng AB.
Một vtcp\(\overrightarrow{v_d}=\overrightarrow{AB}\left(6;2\right)=2\left(3;1\right)\).
Phương trình đường thẳng d là: \(3\left(x-2\right)+1\left(y-5\right)=0\)\(\Leftrightarrow3x+y-11=0\).
Th2. d đi qua \(M\left(2;5\right)\) và trung điểm của AB.
Gọi I là trung điểm của AB.
\(x_I=\dfrac{-1+5}{2}=2;y_I=\dfrac{4+2}{2}=3\).
Vậy \(I\left(2;3\right)\).
Một véc tơ chỉ phương của d là: \(\overrightarrow{MI}=\left(0;-2\right)\).
Phương trình đường thẳng d là: \(0\left(x-2\right)-2\left(y-5\right)=0\)\(\Leftrightarrow y=5\).