Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đường thẳng cần tìm có hệ số góc là \(-\frac{1}{2}\)nên có dạng \(y=-\frac{1}{2}x+a\)
Phương trình hoành độ giao điểm của \(\left(d_1\right)\&\left(d_2\right)\)là: \(x+3=2x-1\)\(\Leftrightarrow x=4\)
\(\Rightarrow y=x+3=4+3=7\)
Vậy giao điểm của \(\left(d_1\right)\&\left(d_2\right)\)là điểm \(\left(4;7\right)\)
Mà \(\left(d\right):y=-\frac{1}{2}x+a\)đi qua điểm \(\left(4;7\right)\)nên ta thay \(x=4;y=7\)vào hàm số, ta có:
\(7=-\frac{1}{2}.4+a\)\(\Leftrightarrow a=9\)
Vậy phương trình đường thẳng cần tìm là \(\left(d\right):y=-\frac{1}{2}x+9\)
Vì (d) có hệ số góc bằng -1/2 nên a=-1/2
Vậy: (d): y=-1/2x+b
Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}2x-1=x+3\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
Thay x=4 và y=7 vào (d), ta được: b-2=7
hay b=9
a: Phương trình hoành độ giao điểm là:
2x+1=x+1
=>2x-x=1-1
=>x=0
Thay x=0 vào y=x+1, ta được:
y=0+1=1
=>A(0;1)
b: Vì (d4) có hệ số góc là -4 nên (d4): y=-4x+b
Thay x=0 và y=1 vào (d4), ta được:
b-4*0=1
=>b=1
=>y=-4x+1
c: Vì (d5)//(d6) nên (d5): y=0,5x+a
Thay x=0 và y=1 vào (d5), ta được:
a+0,5*0=1
=>a=1
=>y=0,5x+1
d: Thay x=0 và y=1 vào (d3), ta được:
0*(m+1)+2m-1=1
=>2m-1=1
=>2m=2
=>m=1
a: (d) vuông góc (d1)
=>a*(-1/2)=-1
=>a=2
=>(d): y=2x+b
Thay x=-2 và y=5 vào (d), ta được:
b-4=5
=>b=9
b:
Sửa đề: (d1): y=-3x+4
Tọa độ giao của (d2) và (d3) là:
3x-7/2=2x-3 và y=2x-3
=>x=1/2 và y=1-3=-2
(d)//(d1)
=>(d): y=-3x+b
Thay x=1/2 và y=-2 vào (d), ta được:
b-3/2=-2
=>b=1/2
=>y=-3x+1/2
d vuông góc với đường thẳng y= \(\dfrac{1}{2}\)x - 3 ạ. Vừa nãy em viết thiết mất
c: Gọi (d): y=ax+b(a<>0) là phương trình đường thẳng cần tìm
Vì (d)//(d1) nên \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b\ne0\end{matrix}\right.\)
Vậy: (d): \(y=\dfrac{1}{2}x\)+b
Thay x=4 và y=5 vào (d), ta được:
\(b+\dfrac{1}{2}\cdot4=5\)
=>b+2=5
=>b=3
Vậy: (d): \(y=\dfrac{1}{2}x+3\)
b) Ta có: (d2): \(y=\dfrac{-x}{3}-\dfrac{1}{2}\)
\(\Leftrightarrow y=\dfrac{-1}{3}x-\dfrac{1}{2}\)
Gọi A(xA;yA) là giao điểm của (d1) và (d2)
Hoành độ của A là:
\(\dfrac{-1}{3}x-\dfrac{1}{2}=2-x\)
\(\Leftrightarrow\dfrac{-1}{3}x-\dfrac{1}{2}-2+x=0\)
\(\Leftrightarrow\dfrac{2}{3}x-\dfrac{5}{2}=0\)
\(\Leftrightarrow\dfrac{2}{3}x=\dfrac{5}{2}\)
\(\Leftrightarrow x=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{5}{2}\cdot\dfrac{3}{2}=\dfrac{15}{4}\)
Thay \(x=\dfrac{15}{4}\) vào hàm số y=2-x, ta được:
\(y=2-\dfrac{15}{4}=\dfrac{8}{4}-\dfrac{15}{4}=-\dfrac{7}{4}\)
Vậy: \(A\left(\dfrac{15}{4};-\dfrac{7}{4}\right)\)
Đầu tiên ta tìm giao điểm của d1 và d2 bằng cách xét hệ
\(\hept{\begin{cases}y=x+3\\y=2x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=7\end{cases}}\)
Vậy đường thằng d đi qua điểm ( 4,7) và có hệ số góc là -1/2 nên phương trình d là
\(y=-\frac{1}{2}\left(x-4\right)+7\)