Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)
\(\Leftrightarrow V\ge-1\forall x\)
Dấu '=' xảy ra khi x=1
a) \(A=x^2-2x+6\\ =\left(x^2-2x+1\right)+5\\ =\left(x-1\right)^2+5\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
b) \(B=4x^2+12x-3\\ =\left(4x^2+12x+9\right)-6\\ =\left(2x+3\right)^2-6\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{3}{2}\)
c) \(C=1-x+x^2\\ =\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
\(A=x^2-2x+6=\left(x-1\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=1\)
\(B=4x^2+12x-3=\left(2x+3\right)^2-12\ge-12\)
\(minB=-12\Leftrightarrow x=-\dfrac{3}{2}\)
\(C=1-x+x^2=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minC=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
|4x - 3| lớn hơn hoặc bằng 0
|5y + 7,5| lớn hơn hoặc bằng 0
|4x - 3| + |5y + 7,5| +17,5 lớn hơn hoặc bằng 17,5
Vậy Max A = 17,5 khi x = \(\frac{3}{4}\) và y = \(-1,5\)
a: Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: Ta có: \(-x^2+x+2\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a) A=x^2-2x+7
=x2
-2x+1+6
=(x-1)2+6
vì (x-1)2 ≥ với mọi x nên
(x-1)2+6 ≥ 6
dấu "=" xảy ra khi:
x-1=0
<=>x=1
Vậy GTNN của A là 6 tại x=1
b)B=4x-4x^2
=-4x2+4x-1+1
=-(4x2+4x+1)+1
=-(2x+1)2+1
vì -(2x+1)2 ≤ 0 nên
-(2x+1)2+1 ≤ 1
Dấu "=" xảy ra khi
2x+1=0
<=>x=-1/2
Vậy GTLN của B là 1 tại x=-1/2
:D
Có thể làm theo cách này :
a) A = x^2 - 2x + 7
=> A = x^2 - 2x . 1/2 + (1/2)^2 + 27/4
= [x^2 - 2x . 1/2 + (1/2)^2] + 27/4
= (x - 1/2)^2 + 27/4
mà (x - 1/2)^2 > 0
=> (x - 1/2)^2 + 27/4 > 27/4
Vậy giá trị nhỏ nhất của A = 27/4 tại x = 1/2
:D
\(A=x^2-x+3=x^2-x+\dfrac{1}{4}-\dfrac{1}{4}+3=\left(x-2\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\left(\left(x-2\right)^2\ge0\right)\)
\(\Rightarrow Min\left(A\right)=\dfrac{11}{4}\)
\(B=x^2-4x+1=x^2-4x+4-4+1=\left(x-2\right)^2-3\ge-3\left(\left(x-2\right)^2\ge0\right)\)
\(\Rightarrow Min\left(B\right)=-3\)
Câu C bạn xem lại đề
\(D=3-4x-x^2=3+4-4-4x-x^2=7-\left(x^2+4x+4\right)=7-\left(x+2\right)^2\le7\left(-\left(x+2\right)^2\le0\right)\)
\(\Rightarrow Max\left(D\right)=7\)
\(A=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{11}{4}\\ =\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\in R\)
Vậy GTNN của A là 11/4 khi x=1/2
a) A=x^2-2x+7
=x2-2x+1+6
=(x-1)2+6
vì (x-1)2\(\ge\)với mọi x nên
(x-1)2+6\(\ge\)6
dấu "=" xảy ra khi:
x-1=0
<=>x=1
Vậy GTNN của A là 6 tại x=1
b)B=4x-4x^2
=-4x2+4x-1+1
=-(4x2+4x+1)+1
=-(2x+1)2+1
vì -(2x+1)2\(\le\)0 nên
-(2x+1)2+1\(\le\)1
Dấu "=" xảy ra khi
2x+1=0
<=>x=-1/2
Vậy GTLN của B là 1 tại x=-1/2
a) A = x2 - 2x + 7
=> A = x2 - 2x . 1/2 + (1/2)2 + 27/4
= [x2 - 2x . 1/2 + (1/2)2] + 27/4
= (x - 1/2)2 + 27/4
mà (x - 1/2)2 > 0
=> (x - 1/2)2 + 27/4 > 27/4
Vậy giá trị nhỏ nhất của A = 27/4 tại x = 1/2
\(M=4x-x^2+3\\ =-(x^2-4x-3)\\ =-(x^2-4x+4)+7\\ =-(x+2)^2+7 \leq7,\forall x\in \mathbb{R}\quad (\mathrm{vì}-(x+2)^2\leq0)\)
Dấu bằng xảy ra khi và chỉ khi \(-(x+2)^2=0\Leftrightarrow x+2=0 \Leftrightarrow x=-2\).
Vậy \(\mathrm{Max}M=7\Leftrightarrow x=-2\).
Giải cả cách hộ mk