Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+...+2^{30}\)
\(2A=2+2^2+2^3+...+2^{31}\)
\(2A-A=\left(2+2^2+2^3+...+2^{31}\right)-\left(1+2+2^2+...+2^{30}\right)\)
\(A=2^{31}-1\)
\(A+1=2^{31}\)
\(A=1+3+3^2+...+3^{41}\)
\(3A=3+3^2+3^3+...+3^{42}\)
\(3A-A=3+3^2+...+3^{42}-1-3-...-3^{41}\)
\(2A=3^{42}-1\)
\(A=\dfrac{3^{42}-1}{2}\)
Ta có: \(2A+1\)
\(=2\cdot\dfrac{3^{42}-1}{2}+1\)
\(=3^{42}-1+1\)
\(=3^{42}\)
\(=\left(3^2\right)^{21}\)
\(=9^{21}\)
\(A=1+2+2^2+2^3+....+2^{30}\)
\(2.A=2+2^2+2^3+2^4+...+2^{30}\)
\(2.A-A=\left(2+2^2+2^3+2^4+...+2^{31}\right)-\left(1+2+2^2+2^3+...+2^{30}\right)\)
\(A=2^{31}-1\)
\(\Rightarrow A+1=2^{31}-1+1\)
\(\Rightarrow A+1=2^{31}\)
Ta có: \(A=2+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=2^{101}-2\)
Hay \(A=2^{101}-2\)
Vậy \(A=2^{101}-2\)
_Học tốt_
\(13^4\cdot16^2=13\cdot13\cdot13\cdot13\cdot16\cdot16\)
\(=13\cdot13\cdot13\cdot13\cdot4\cdot4\cdot4\cdot4\)
\(=\left(13\cdot4\right)\left(13\cdot4\right)\left(13\cdot4\right)\left(13\cdot4\right)\)
\(=52\cdot52\cdot52\cdot52\)
\(=52^4\)
2^(10 : 64 x 16) = 2^[(10 x 16) : 64] = 2^(160 : 64) = 2^25
2^(10 x 8) = 2^80 3^(5 : 27) = 3^(5/27) 5^(2 x 125) = 5^250 6^(6 : 36) = 6^(1/6)
\(\dfrac{5^{2021}}{5^{2020}}\cdot5^2=5\cdot5^2=5^3\)