Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)
\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)
\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)
\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)
\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)
\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)
A=x^2+2(x^2+2x+1)+3(x^2+4x+4)+4(x^2+6x+9)
=x^2+2x^2+4x+2+3x^2+12x+12+4x^2+24x+36
=10x^2+40x+50
=(9x^2+30x+25)+(x^2+10x+25)
=(3x+5)^2+(x+5)^2
b)\(27-10\sqrt{2}=5^2-2.5\sqrt{2}+2=\left(5-\sqrt{2}\right)^2\)
c)\(18-8\sqrt{2}=4^2-2.4\sqrt{2}+2=\left(4-\sqrt{2}\right)^2\)
d)\(4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
e)\(6\sqrt{5}+14=9+2.3\sqrt{5}+5=\left(3+\sqrt{5}\right)^2\)
f)\(20\sqrt{5}+45=5^2+2.5.2\sqrt{5}+20=\left(5+2\sqrt{5}\right)^2\)
g)\(7-2\sqrt{6}=6-2\sqrt{6}+1=\left(\sqrt{6}-1\right)^2\)
a)\(\left[\left(a-b\right)^2-2\left(a-b\right)\left(c-b\right)+\left(c-b\right)^2\right]-\left(a-b\right)^2-\left(b-c\right)^2=\left(a-b-c+b\right)^2-\left(a-b\right)^2-\left(b-c\right)^2\)
\(=\left(a-c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2\) tương tự thì
A= \(\left(a-c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2+\left(b-c\right)^2-\left(b-a\right)^2-\left(c-a\right)^2+\left(b-a\right)^2-\left(b-c\right)^2-\left(a-c\right)^2\)
\(=\left(a-c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2+\left(b-c\right)^2-\left(a-b\right)^2-\left(a-c\right)^2+\left(a-b\right)^2-\left(b-c\right)^2-\left(a-c\right)^2\)
\(=-\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\)
A, \(\frac{9}{4}x^2+3x+4\)
= \(\left(\frac{3}{2}x^2\right)+2\cdot\frac{3}{2}x\cdot2+2^2\)
= \(\left(\frac{3}{2}x+2\right)^2\)
mk mới lớp 6