Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
a) 3,2(34)
0,252(65)
12,(02)
b) Các phân số \(\frac{11}{27};\frac{3}{57}\text{ và }\frac{12}{990}=\frac{2}{165}\)viết được dưới dạng số thập phân vô hạn tuần hoàn vì mãu của chúng khi phân tích ra các thừa số nguyên tố không gồm các thừa số 2 hoặc 5
Ta có :
\(0,0\left(8\right)=\frac{4}{45}\)
\(0,1\left(2\right)=\frac{11}{90}\)
\(0,1\left(23\right)=\frac{61}{495}\)
Ta có:
\(0,0\left(8\right)=0,0\left(1\right).8=\frac{0,\left(1\right)}{10}.8=\frac{1}{90}.8=\frac{8}{90}\)
Tương tự hết!
0,0(8) = \(\frac{1}{10}\).0,(8) = \(\frac{1}{10}.\frac{8}{9}=\frac{4}{45}\)
\(a,1,\left(27\right)=1+\frac{27}{99}=1+\frac{3}{11}=\frac{14}{11}\)
\(0,\left(423\right)=\frac{423}{999}=\frac{47}{111}\)
\(2,\left(15\right)=2+\frac{15}{99}=2+\frac{5}{33}=\frac{71}{33}\)
\(b,3,04\left(31\right)=3+\frac{431-4}{9990}=3+\frac{427}{9990}=\frac{3397}{9990}\)
\(1,8\left(34\right)=1+\frac{834-8}{990}=1+\frac{413}{495}=\frac{908}{495}\)
a)
– Phân số \(\frac{5}{8}\) được viết dưới dạng số thập phân hữu hạn vì có mẫu 8 = 23 không có ước nguyên tố khác 2 và 5
– Phân số \(-\frac{3}{20}\) được viết dưới dạng số thập phân hữu hạn vì có mẫu 20 = 22 . 5 không có ước nguyên tố khác 2 và 5
– Phân số \(\frac{14}{35}\) được viết dưới dạng số thập phân hữu hạn vì \(\frac{14}{35}\) = 2/5, mẫu 5 không có ước nguyên tố khác 2 và 5
– Các phân số \(\frac{4}{11}\); \(\frac{15}{22}\); 7/12 có mẫu lần lượt là 11 = 1 . 11; 22 = 2 . 11; 12 = 3 . 22 đều chứa ước nguyên tố khác 2 và 5 nên được viết dưới dạng số thập phân vô hạn tuần hoàn.
b) 5/8 = 0,625; −3/20 = -0,15; 14/35 = 2/5 = 0,4
4/11 = 0,(36); 15/22 = 0,6(81); 7/12 = 0,58(3)
a ) \(A=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{m\left(m^2+3m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
Vì \(m\left(m+1\right)\left(m+2\right)+5\) và \(m\left(m+1\right)\left(m+2\right)+6\) là hai số tự nhiên liên tiếp
Do đó \(A=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\) tối giản (đpcm)
b ) Xét mẫu \(m\left(m+1\right)\left(m+2\right)+6\)
Ta thấy \(m\left(m+1\right)\left(m+2\right)\) là tích 3 số tự nhiên liên tiếp nên \(m\left(m+1\right)\left(m+2\right)\text{⋮}3\)
Mà \(6\text{⋮}3\) nên \(\left[m\left(m+1\right)\left(m+2\right)+6\right]\text{⋮}3\)
Mà a lại là phân số tối giản (theo a) nên \(A\) đc viết dưới dạng số thập phân vô hạn tuần hoàn
a)Ta có: \(m^3+3m^2+2m+5=m.\left(m^2+3m+2\right)+5\)
\(=m.\left[m.\left(m+1\right)+2.\left(m+1\right)\right]+5\)
\(=m.\left(m+1\right).\left(m+2\right)+5\)
Giả sử \(d\) là ƯCLN của \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+5\) chia hết cho d và \(m.\left(m+1\right).\left(m+2\right)+6\) chia hết cho \(d\)
\( \implies\) \(\left[m.\left(m+1\right).\left(m+2\right)+6\right]-\left[m.\left(m+1\right).\left(m+2\right)+5\right]\) chia hết cho \(d\)
\( \implies\) \(1\) chia hết cho \(d\)
\( \implies\) \(d=1\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\) nguyên tố cùng nhau
Vậy \(A\) là phân số tối giản
b)Ta thấy : \(m;m+1;m+2\) là \(3\) số tự nhiên liên tiếp nên nếu \(m\) chia \(3\) dư \(1\) thì \(m+2\) chia hết cho \(3\) ; nếu \(m\) chia \(3\) dư \(2\) thì \(m+1\) chia hết cho \(3\)
Do đó : \(m.\left(m+1\right).\left(m+2\right)\) chia hết cho \(3\) . Mà \(6\) chia hết cho \(3\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+6\) có ước nguyên tố là \(3\)
Vậy \(A\) là số thập phân vô hạn tuần hoàn
Giải thích: Các phân số đã cho có mẫu dương và các mẫu đó lần lượt là 8 = 23, 5, 20 = 22.5, 125 = 53 đều không chứa thừa số nguyên tố nào khác 2 và 5 nên chúng được viết dưới dạng số thập phân hữu hạn.
3/8 = 0,375 ; −7/5 = -1,4; 13/20 = 0,65 ; −13/125 = -0,104
b. Các phân số đã cho có mẫu dương và các mẫu đó lần lượt là 12=22.3, 22=2.11, 35=7.5, 65 = 5.13 đều có chứa thừa số nguyên tố khác 2 và 5 nên chúng được viết dưới dạng số thập phân vô hạn tuần hoàn
ta được : \(\frac{5}{12}=0.41\left(6\right);\frac{29}{22}=1.3\left(18\right);\frac{27}{35}=0.7;\frac{51}{65}=0.8\)
a)2,(27)=\(\frac{25}{11}\)
b)3,1(5)=\(\frac{142}{45}\)
a) \(2,\left(27\right)=\frac{227-2}{99}=\frac{225}{99}=\frac{25}{11}\)
b) \(3,1\left(5\right)=\frac{315-31}{90}=\frac{274}{90}=\frac{142}{45}\)