\(16-x^2\)

\(4x^2-9\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

\(16-x^2=4^2-x^2=\left(4-x\right)\left(4+x\right)\)

\(4x^2-9=\left(2x\right)^2-3^2=\left(2x-3\right)\left(2x+3\right)\)

\(a^4-25=\left(a^2\right)^2-5^2=\left(a^2-5\right)\left(a^2+5\right)\)

\(\left(a+b\right)^2-1=\left(a+b\right)^2-1^2=\left(a+b-1\right)\left(a+b-1\right)\)

\(\left(a+b\right)^2-\left(m-n\right)^2=\left(a+b-m+n\right)\left(a+b+m-n\right)\)

\(x^3-27=x^3-3^3=\left(x-3\right)\left(x^2+3x+3^2\right)\)

\(64x^3+\frac{1}{27}=\left(4x\right)^3+\left(\frac{1}{3}\right)^3=\left(4x+\frac{1}{3}\right)\left(16x^2+\frac{4}{3}x+\frac{1}{9}\right)\)

Tham khảo~

19 tháng 7 2018

\(16-x^2=4^2-x^2=\left(4-x\right)\left(4+x\right)\)

\(4x^2-9=\left(2x\right)^2-3^2=\left(2x+3\right)\left(2x-3\right)\)

\(a^4-25=\left(a^2\right)^2-5^2=\left(a^2+5\right)\left(a^2-5\right)\)

\(\left(a+b\right)^2-1=\left(a+b+1\right)\left(a+b-1\right)\)

\(\left(a+b\right)^2-\left(m-n\right)^2=\left(a+b+m-n\right)\left(a+b-m+n\right)\)

\(x^3-27=x^3-3^3=\left(x-3\right)\left(x^2+3x+9\right)\)

\(64x^3+\frac{1}{27}=\left(4x\right)^3+\left(\frac{1}{3}\right)^3=\left(4x+\frac{1}{3}\right)\left(16x^2-\frac{4}{3}x+\frac{1}{9}\right)\)

19 tháng 7 2018

\(16-x^2=4^2-x^2=\left(4-x\right)\left(4+x\right)\)

\(4x^2-9=\left(2x\right)^2-3^2=\left(2x-3\right)\left(2x+3\right)\)

\(a^4-25=\left(a^2\right)^2-5^2=\left(a^2-5\right)\left(a^2+5\right)\)

\(\left(a+b\right)^2-1=\left(a+b\right)^2-1^2=\left(a+b-1\right)\left(a+b+1\right)\)

\(\left(a+b\right)^2-\left(m-n\right)^2=\left(a+b-m+n\right)\left(a+b+m-n\right)\)

\(x^3-27=x^3-3^3=\left(x-3\right)\left(x^2+3x+9\right)\)

\(64x^3+\dfrac{1}{27}=\left(4x\right)^3+\left(\dfrac{1}{3}\right)^3=\left(4x+\dfrac{1}{3}\right)\left(16x^2-\dfrac{4}{3}x+\dfrac{1}{9}\right)\)

5 tháng 1 2019

\(\frac{2}{5}x\left(y-1\right)-\frac{2}{5}y\left(y-1\right)\)

\(=\left(y-1\right)\left[\left(\frac{2}{5}x-\frac{2}{5}y\right)\right]\)

\(=\left(y-1\right)\frac{2}{5}\left(x-y\right)\)

5 tháng 1 2019

\(\frac{1}{25}x^2-64y^2\)

\(=\left(\frac{1}{5}x\right)^2-8^2\)

\(=\left(\frac{1}{5}x+8\right)\left(\frac{1}{5}x-8\right)\)

23: \(=\left(2a-b\right)^2-\left(2a-2b\right)^2\)

\(=\left(2a-b-2a+2b\right)\left(2a-b+2a-2b\right)\)

\(=b\left(4a-3b\right)\)

24: \(=\left(3a+3b\right)^2-\left(2a-4b\right)^2\)

\(=\left(3a+3b-2a+4b\right)\left(3a+3b+2a-4b\right)\)

\(=\left(a+7b\right)\left(5a-b\right)\)

25: \(=\left(4a-2b\right)^2-\left(4a-4b\right)^2\)

\(=\left(4a-2b-4a+4b\right)\left(4a-2b+4a-4b\right)\)

\(=2b\left(8a-6b\right)\)

=4b(4a-3b)

1 tháng 8 2018

a) Ta có : (x - 5)2 - 16

= (x - 5)2 - 42

= (x - 5 - 4)(x - 5 + 4)

= (x - 1)(x - 9)

b) 25 - (3 - x)2

= 52 - (3 - x)2

= (5 - 3 + x)(5 + 3 - x)

= (x + 2)(8 - x)

1 tháng 8 2018

c) (7x - 4)2 - (2x + 1)2

= (7x - 4 - 2x - 1)(7x - 4 + 2x + 1)

= (5x - 5)(9x - 3)

= 5(x - 1)3(3x - 1)

= 15(x - 1)(3x - 1)

Bài giải:

1.

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

= -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1818 = (2x)3 – (1212)3 = (2x - 1212)[(2x)2 + 2x . 1212 + (1212)2]

= (2x - 1212)(4x2 + x + 1414)

d) 125125x2 – 64y2 = (15x)2(15x)2- (8y)2 = (1515x + 8y)(1515x - 8y)

2.

a) x3 + 127127 = x3 + (1313)3 = (x + 1313)(x2 – x . 1313+ (1313)2)

=(x + 1313)(x21313x + 1919)

b) (a + b)3 – (a - b)3

= [(a + b) – (a – b)][(a + b)2 + (a + b) . (a – b) + (a – b)2]

= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2)

= 2b . (3a3 + b2)

c) (a + b)3 + (a – b)3 = [(a + b) + (a – b)][(a + b)2 – (a + b)(a – b) + (a – b)2]

= (a + b + a – b)(a2 + 2ab + b2 – a2 +b2 + a2 – 2ab + b2]

= 2a . (a2 + 3b2)

d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3 . (2x)2 . y +3 . 2x . y + y3 = (2x + y)3

e) - x3 + 9x2 – 27x + 27 = 27 – 27x + 9x2 – x3 = 33 – 3 . 32 . x + 3 . 3 . x2 – x3 = (3 – x)3

Bài 1: Phân tích đa thức thành nhân tử: a) \(2x\left(x+1\right)+2\left(x+1\right)\) b) \(y^2\left(x^2+y\right)-zx^2-zy\) c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\) d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\) e) \(x^2-6xy+9y^2\) f) \(x^3+6x^2y+12xy^2+8y^3\) g) \(x^3-64\) h) \(125x^3+y^6\) k) \(0,125\left(a+1\right)^3-1\) t) \(x^2-2xy+y^2-xz+yz\) q) \(x^2-y^2-x+y\) p) \(a^3x-ab+b-x\) đ)...
Đọc tiếp

Bài 1: Phân tích đa thức thành nhân tử:

a) \(2x\left(x+1\right)+2\left(x+1\right)\)

b) \(y^2\left(x^2+y\right)-zx^2-zy\)

c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

e) \(x^2-6xy+9y^2\)

f) \(x^3+6x^2y+12xy^2+8y^3\)

g) \(x^3-64\)

h) \(125x^3+y^6\)

k) \(0,125\left(a+1\right)^3-1\)

t) \(x^2-2xy+y^2-xz+yz\)

q) \(x^2-y^2-x+y\)

p) \(a^3x-ab+b-x\)

đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)

l) \(x^2-x-6\)

i) \(x^4+4x^2-5\)

m) \(x^3-19x-30\)

j) \(x^4+x+1\)

y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)

w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

z) \(\left(x^2-8\right)^2+36\)

u) \(81x^4+4\)

Bài 2 : Tìm x

a)\(\left(2x-1\right)^2-25=0\)

b) \(8x^3-50x=0\)

c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

d) \(3x\left(x-1\right)+x-1=0\)

e) \(2\left(x+3\right)-x^2-3x\) =0

f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

5
12 tháng 10 2017

Bài 1 :

a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)

b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)

c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)

d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)

e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)

12 tháng 10 2017

Bài 1 :

f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)

g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)

h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

11 tháng 7 2019

\(a,3x^3y^3-15x^2y^2=3x^2y^2\left(xy-5\right)\)

\(b,5x^3y^2-25x^2y^3+40xy^4\)

\(=5xy^2\left(x^2-5xy+8y^2\right)\)

\(c,-4x^3y^2+6x^2y^2-8x^4y^3\)

\(=-2x^2y^2\left(2x-3+4x^2y\right)\)

\(d,a^3x^2y-\frac{5}{2}a^3x^4+\frac{2}{3}a^4x^2y\)

\(=a^3x^2\left(y-\frac{5}{2}x^2+\frac{2}{3}ay\right)\)

\(e,a\left(x+1\right)-b\left(x+1\right)=\left(x+1\right)\left(a-b\right)\)

\(f,2x\left(x-5y\right)+8y\left(5y-x\right)\)

\(=2x\left(x-5y\right)-8y\left(x-5y\right)=\left(x-5y\right)\left(2x-8y\right)\)

\(g,a\left(x^2+1\right)+b\left(-1-x^2\right)-c\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(a-b-c\right)\)

\(h,9\left(x-y\right)^2-27\left(y-x\right)^3\)

\(=9\left(x-y\right)^2+27\left(x-y\right)^3\)

\(=9\left(x-y\right)^2\left(1+3x-3y\right)\)

11 tháng 7 2019

a,3x3y315x2y2=3x2y2(xy5)a,3x3y3−15x2y2=3x2y2(xy−5)

b,5x3y225x2y3+40xy4b,5x3y2−25x2y3+40xy4

=5xy2(x25xy+8y2)=5xy2(x2−5xy+8y2)

c,4x3y2+6x2y28x4y3c,−4x3y2+6x2y2−8x4y3

=2x2y2(2x3+4x2y)=−2x2y2(2x−3+4x2y)

d,a3x2y52a3x4+23a4x2yd,a3x2y−52a3x4+23a4x2y

=a3x2(y52x2+23ay)=a3x2(y−52x2+23ay)

e,a(x+1)b(x+1)=(x+1)(ab)e,a(x+1)−b(x+1)=(x+1)(a−b)

f,2x(x5y)+8y(5yx)f,2x(x−5y)+8y(5y−x)

=2x(x5y)8y(x5y)=(x5y)(2x8y)=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)

g,a(x2+1)+b(1x2)c(x2+1)g,a(x2+1)+b(−1−x2)−c(x2+1)

=(x2+1)(abc)=(x2+1)(a−b−c)

h,9(xy)227(yx)3h,9(x−y)2−27(y−x)3

=9(xy)2+27(xy)3