K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2023

a) \(x^2+2x+1=x^2+2\cdot x\cdot1+1^2=\left(x+1\right)^2\)

b) \(x^2-4x+4=x^2-2\cdot x\cdot2+2^2=\left(x-2\right)^2\)

c) \(x^2+6xy+9y^2=x^2+2\cdot x\cdot3y+\left(3y\right)^2=\left(x+3y\right)^2\)

d) \(z^2-z+\dfrac{1}{4}=z^2-2\cdot z\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(z-\dfrac{1}{2}\right)^2\)

e) \(25x^2-10x+1=\left(5x\right)^2-2\cdot5x\cdot1+1^2=\left(5x-1\right)^2\)

a) \(x^2-xy+4x-2y+4\)

\(=\left(x^2+4x+4\right)-\left(xy+2y\right)\\ =\left(x+2\right)^2-y.\left(x+2\right)\)

\(=\left(x+2\right).\left(x+2-y\right)\)

b) \(2x^2-5x-3\)

\(=2x^2+x-6x-3\)

\(=\left(2x^2+x\right)-\left(6x+3\right)=x\left(2x+1\right)-3\left(2x+1\right)\)

\(=\left(2x+1\right).\left(x-3\right)\)

c)\(\)

c);d);e) tạm thời tớ chưa nghĩ ra-.-"

tham khả tạm 2 câu ạ, chúc học tốt'.'

a) 7x+7y=7(x+y)

b) 2x2y-6xy2=2xy(x-3y)

c)3x(x-1)+7x2(x-1)=x(x-1)(3+7x)

d)3x(x-4)+5x2(4-x)=(x-4)(3x-5x2)

=x(x-4)(3-5x)

e)6x4-9x3=3x3(2x-3)

f)5y8-15y6=5y6(y2-3)

Bài 1

a, x2 + 4x + 3

24 tháng 8 2019

a) \(x^2+4x+3\)

\(=x^2+3x+x+3\)

\(=x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

27 tháng 9 2019

\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)

\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)

\(=\left(3x+2y+3\right)\left(-x-4y+5\right)\)

27 tháng 9 2019

\(49\left(y-4\right)^2-9y^2-36y-36\)

\(=49\left(y-4\right)^2-\left(9y^2+36y+36\right)\)

\(=49\left(y-4\right)^2-\left(3y+6\right)^2\)

\(=[7\left(y-4\right)]^2-\left(3y+6\right)^2\)

\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)

\(=\left(7y-28+3y+6\right)\left(7y-28-3y-6\right)\)

\(=\left(10y-22\right)\left(4y-34\right)\)

Bài 1:

a)    \(x^3-5x^2+8x-4\)

\(=x^3-4x^2+4x-x^2+4x-4\)  \(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)\(=\left(x-1\right)\left(x-2\right)^2\)

b) Ta có:  \(\frac{A}{M}=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)

   Với \(x\in Z\)thì  \(A⋮M\)khi \(\frac{7}{2x-3}\in Z\)\(\Rightarrow7⋮\left(2x-3\right)\)\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow=\left\{1;5;\pm2\right\}\)thì khi đó \(A⋮M\)

17 tháng 8 2019

Các bài làm này có đúng ko ạ, ai đó duyệt giúp em, em cảm ơn.

Bài 1:

a)x3-5x2+8x-4=x3-4x2+4x-x2+4x-4

=x(x2-4x-4)-(x2-4x+4)

=(x-1) (x-2)2

b)Xét:

\(\frac{a}{b}-\frac{10x^2-7x-5}{2x-3}\)

=\(5x+4+\frac{7}{2x-3}\)

Với x thuộc Z thì A /\ B khi \(\frac{7}{2x-3}\) thuộc  Z => 7 /\ (2x-3)

Mà Ư(7)={-1;1;-7;7} => x=5;-2;2;1 thì A /\ B

c)Biến đổi \(\frac{x}{y^3-1}-\frac{x}{x^3-1}=\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}\)

=\(\frac{\left(x^4-y^4\right)\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)(do x+y=1=>y-1=-x và x-1=-y)

=\(\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left[x^2y^2+y^2x+y^2+xy^2+xy+y+x^2+x+1\right]}\)

=\(\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)

=\(\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)

=\(\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}\)

=\(\frac{-2\left(x-y\right)}{x^2y^2+3}\)Suy ra điều phải chứng minh

Bài 2 )

a)(x2+x)2+4(x2+x)=12 đặt y=x2+x

   y2+4y-12=0 <=>y2+6y-2y-12=0

<=>(y+6)(y-2)=0 <=> y=-6;y=2

>x2+x=-6 vô nghiệm vì x2+x+6 > 0 với mọi x

>x2+x=2 <=> x2+x-2=0 <=> x2+2x-x-2=0

<=>x(x+2)-(x+2)=0 <=>(x+2)(x-1) <=>  x=-2;x-1

Vậy nghiệm của phương trình x=-2;x=1

b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+\frac{x+4}{2005}+\frac{x+5}{2004}\)\(+\frac{x+6}{2003}\)

=\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)+\left(\frac{x+4}{2005}+1\right)\)\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}\)\(+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}\)\(-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)

Nhờ OLM xét giùm em vs ạ !

14 tháng 2 2020

phá ngoặc thôi 

15 tháng 2 2020

@AGT_KTC4 Có cách ngắn hơn ko bạn ???

17 tháng 6 2018

Bài 1: mình ko bik yêu cầu đề bài nên mình ko làm.

Bài 2: 

a/ \(\left(2x+5\right)^2=\left(2x\right)^2+2.2x.5+5^2\)

\(=4x^2+20x+25\)

b/ \(\left(3x+4\right)^2=\left(3x\right)^2+2.3x.4+4^2\)

\(=9x^2+24x+16\)

c/\(\left(3x+5y+\frac{1}{2}\right)^2\)

Đối với bình phương của một tổng gồm ba hạng tử, ta có công thức như sau:

(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=a2+b2+c2+2(ab+bc+ac)

\(\left(3x+5y+\frac{1}{2}\right)^2=9x^2+25y^2+\frac{1}{4}+2\left(15x+\frac{3x}{2}+\frac{5y}{2}\right)\)

Bài 3:

a/ A= x2+10x+30

A= x2+2.5x+25+5

A= x2+2.5.x+52+5

A=(x+5)2+5

Ta có (x+5)2 luôn luôn > hoặc = 0

=>(x+5)2+5 luôn luôn lớn hơn 0 (vì 5>0)

=> A luôn dương.

b/ \(B=3x^2+6x+19\\ B=\left(\sqrt{3x}\right)^2+2x.\sqrt{3}.\sqrt{3}+3+16\)

\(B=\left(\sqrt{3x}+\sqrt{3}\right)^2+16\)

(Tương tự như câu A)

Ta có \(\left(\sqrt{3x}+\sqrt{3}\right)^2\)luôn luôn > hoặc = 0

=> \(\left(\sqrt{3x}+\sqrt{3}\right)^2+16\) luôn luôn > 0 (vì 16 > 0)

=> B luôn dương.

c/ \(C=4x^2+10x+32\\ C=\left(2x\right)^2+2.2x.\frac{5}{2}+\frac{25}{4}+\frac{103}{4}\\C=\left(2x+\frac{5}{2}\right)^2+\frac{103}{4} \)

(Chứng minh tương tự câu a, b)

Chúc bạn học tốt!!

17 tháng 6 2018

mk giúp bạn bài  3 còn bài 1, 2 tự làm nha

a , A = x2  + 10x +30 

= (x2 + 2 . 5 . x +52 ) +5

= (x+5)2 + 5

Vì (x+5)2  >= 0 (luôn đúng)

=> (x+5)2 + 5  luôn luôn dương